SIRT2基因启动子在心肌梗死病人中遗传和功能变异研究
[Abstract]:Background: acute myocardial infarction (AMI) is a manifestation of acute attack of coronary artery disease (CAD). It is mainly caused by the rupture of unstable atherosclerotic plaque. The pathological mechanism of atherosclerosis is known to be mainly involved in many metabolic processes, such as cell inflammation, oxygenation stress, platelet function, and so on. The whole genome association study (GWAS) found that the occurrence of CAD is associated with genetic variation, but these genetic variations can only explain 10% of the occurrence of CAD. Low frequency and rare genetic variation may be associated with the occurrence of coronary heart disease that.SIRT2 belongs to a member of the sirtuin family, which is mainly in mammals, and is highly conservative. The third class histone deacetylase.SIRT2 of nicotinamide adenine adenine dinucleotide (NAD+) plays an important role in genomic stability, metabolism, inflammation, oxidative stress, autophagy, and the regulation of platelet and vascular endothelial function. In the process of gene expression, promoter can regulate the change of gene expression level. Therefore, this study It is presumed that the genetic variation of SIRT2 gene may have an important role in the pathogenesis of AMI. To explore the relationship between the occurrence of AMI and the SIRT2 gene by studying the changes in the gene expression level of the genetic variation in the promoter region of the SIRT2 gene, the purpose of this study is to explore the low frequency inheritance by sequencing in two groups of people. The effect of mutation and single nucleotide polymorphism (SNPs) on the incidence of AMI and control groups; secondly, by constructing a pGL3-basic reporter vector carrying the SIRT2 gene and the promoter of the genetic variation site, the change of gene expression level caused by genetic variation was detected. The study on the genetic and functional variation of the promoter of the SIRT2 gene was carried out. The role of SIRT2 gene in the pathogenesis of AMI was investigated. 1. The study was finally included in 375 new AMI cases and 377 healthy controls. The clinical baseline data of two groups of people were collected and the whole genome DNA.2 was extracted respectively. The primers were designed according to the SIRT2 gene promoter sequence provided by the NCBI gene database, and the PCR method was used. The target fragment of SIRT2 gene promoter was amplified and sequenced to analyze the gene sequence variation.3 of SIRT2, and the sequence of mutations of the promoter sequence and the wild type target gene fragment of the SIRT2 gene were constructed to the pGL3-basic reporter gene carrier, and the constructed pGL3-basic reporter gene vector and the internal reference plasmid pRL-TK were used to pass the lipid. The plastids were co transfected with HEK293 and H9c2 cells, and the relative luciferase activity of SIRT2 promoter was analyzed by Promega double fluorescent reporter gene analyzer, and the changes of gene promoter transcriptional activity were detected by genetic variation. The results were as follows: 1, 17 DNA sequences (DSVs), including 5 SNPs loci, were found by sequencing. 3 new heterozygous DSVs, g.38900270AG, g.38899853CT and g.38900888_91delTAAA, were found only in 3 AMI patients, which were not found in the normal control group. 5 new DSVs were found in the control group, g.38900562CT, g.38900413AC, g.38900030GA, g.38899925AC and g.38899852CT in the AMI group. The remaining 4 new heterozygous mutation sites and 5 SNPs were found in the control group and the AMI group, but there was no statistical significance (P0.05).2. The pGL3-basic reporter gene carrier was successfully constructed, pGL3-WT (wild type SIRT2 gene promoter), pGL3-38900907G, pGL3-38900888_91del, pGL3-38900562T, pGL3-38900413C, pGL3-38900291G, etc. 38900030A, pGL3-38899925C, pGL3-38899903C, pGL3-38899853T, pGL3-38899852T and pGL3-38899781G.3 were transiently transfected into HEK293 and H9c2 cells in vitro by liposomes to detect the relative luciferase expression activity of the SIRT2 gene promoter with different DSVs. (1) in HEK293 cells, only in the AMI group could affect the promoter of the gene promoter. Transcriptional activity: g.38900888_91delTAAA (P0.05) and g.38900270AG (P0.01) significantly reduced the transcriptional activity of the SIRT2 gene promoter, and g.38899853CT significantly increased the transcriptional activity of the SIRT2 gene promoter (P0.01). Only 5 DSVs (g.38900562CT, g.38900413AC, g.38900030GA, P0.01) could be found in the control group. After 93 cells, there was no significant change in the transcriptional activity (P0.05) of the SIRT2 gene promoter, and 4 DSVs[g.38900907AG (rs4803006), g.38900291CG (rs2053071), g.38899903TC and g.38899781CG] all existed in the control group and the AMI group. After transfection of its corresponding expression vector to HEK293 cells, no significant changes were found in SIRT2 basis. The transcriptional activity of promoter (P0.05). (2) transfection of g.38900888_91delTAAA and g.38900270AG found in group AMI into H9c2 cells could significantly reduce the transcriptional activity of SIRT2 gene promoter (P0.01). G.38899853CT transfection could significantly increase the transcriptional activity of the SIRT2 gene promoter (P0.01). Similar to the AMI group and the control group. After transfection of frequency sites g.38900907AG (rs4803006) and g.38900291CG (rs2053071) to H9c2 cells, there was no significant change in the transcriptional activity of the SIRT2 gene promoter (P0.05). Conclusion: the study of the genetic and functional variation of the promoter of SIRT2 gene found that the low frequency sequence found in the AMI case may affect the mutation site in the AMI case. The transcriptional activity of SIRT2 gene leads to changes in its expression level and plays an important role in the occurrence and development of myocardial infarction, which provides potential targets for the prevention and treatment of myocardial infarction.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R542.22
【相似文献】
相关期刊论文 前10条
1 赵文璞,岸裕幸,村口笃;小鼠与人重排活化基因2启动子的比较[J];中华微生物学和免疫学杂志;2003年09期
2 赵慧,郑文岭,崔东,马文丽;泛素启动子的研究进展[J];广东医学;2003年12期
3 高刚;鲁艳芹;韩金祥;赵丽;;双启动子对增强型绿色荧光蛋白表达的影响[J];中国生物制品学杂志;2009年10期
4 程元桥,林菊生,王文琦,廖家智,姜晓丹,冯玮,熊平;诱导型一氧化氮合酶基因启动子-969G→C多态性的功能[J];世界华人消化杂志;2004年09期
5 吴志香;邵敬伟;袁凤山;;胰岛素样生长因子结合蛋白-1启动子的克隆与序列分析[J];生物技术通讯;2005年06期
6 王秀亮;陈卫;梁光萍;陈建;苏踊跃;杨程;罗向东;;人β1整合素启动子核心启动序列初步分析[J];现代生物医学进展;2009年01期
7 周天鸿,李月琴,朱嘉明,云泓若,肖小敏;真核细胞转录系统启动T7启动子起始的研究[J];暨南大学学报(自然科学与医学版);2000年03期
8 朱立红;倪培华;应雅韵;张洁;金磊;樊绮诗;;血脂与肝脂酶启动子514C/T多态性的关系[J];诊断学理论与实践;2005年06期
9 朱爱华,彭大新,刘秀梵,张如宽;鸡痘病毒载体启动子的优化[J];病毒学报;2000年04期
10 丁清泉,戴顺英;σ~(38)识别的启动子-35区核酸序列特征研究[J];中国生物化学与分子生物学报;1999年01期
相关会议论文 前10条
1 徐昌杰;胡桂兵;张上隆;;果实成熟特异启动子研究进展[A];中国园艺学会第五届青年学术讨论会论文集[C];2002年
2 萧凤回;段承俐;薛刚平;;快速检测干旱和脱水可诱导植物启动子瞬间表达特性的方法[A];中国遗传学会七届一次青年研讨会暨上海高校模式生物E——研究院第一届模式生物学术研讨会论文汇编[C];2005年
3 龙海涛;李洪清;李玲;;蓝猪儿捕获启动子系统建立[A];2006中国植物细胞发育与分子生物学学术研讨会论文集[C];2006年
4 杨俊;刘继红;郭小林;王涛;王军凯;陈美元;王少刚;叶章群;;人肾组织GGCX基因启动子区克隆与活性分析[A];第十五届全国泌尿外科学术会议论文集[C];2008年
5 马小娟;侯林;陈曦;马飞;;人类选择性剪接基因与选择性启动子关联的系统分析[A];“基因、进化与生理功能多样性”海内外学术研讨会暨中国生理学会第七届比较生理学学术会议论文摘要[C];2009年
6 陈慧峰;林育纯;林丽娜;方飞;陈雯;林忠宁;;蛋白磷酸酶2A不同亚基基因启动子区遗传变异性位点筛查[A];遗传学进步与人口健康高峰论坛论文集[C];2007年
7 李静;刘学群;王春台;;一个烟草葡糖基转移酶基因启动子的克隆与诱导表达[A];湖北省植物生理学会第十五次学术研讨会论文集[C];2007年
8 吕杰;赵莹子;黄玉屏;沈萍;陈向东;;嗜盐古生菌Haloarcula hispanica淀粉酶基因启动子的研究及其跨域表达载体的构建[A];基因开启未来:新时代的遗传学与科技进步——湖北省遗传学会第八次代表大会暨学术讨论会论文摘要汇编[C];2009年
9 夏定国;张婷婷;赵巧玲;张国政;裘智勇;;家蚕脂肪酶Ⅰ基因的启动子分析[A];第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集[C];2013年
10 王小华;姜广水;吴钦贞;姜萍萍;刘浩;江浩;;二价双启动子防龋DNA疫苗的构建及鉴定[A];2007年第七次全国牙体牙髓病学学术会议论文集[C];2007年
相关重要报纸文章 前3条
1 记者 钱铮;人类DNA上启动子数量可能超过十九万[N];人民日报;2006年
2 钱铮;人类DNA上启动子数量可能超过19万个[N];医药经济报;2006年
3 ;儿童系统性红斑狼疮中白细胞介素-10启动子区单核苷酸多态性对自身表达水平的影响[N];中国医药报;2003年
相关博士学位论文 前10条
1 马洪鑫;ZHX2调控脂蛋白脂酶参与脂肪肝及肝细胞肝癌的作用及机制研究[D];山东大学;2015年
2 宋剑平;基质金属蛋白酶-3基因启动子区多态与散发性脑动静脉畸形的遗传易感性分析与功能研究[D];复旦大学;2014年
3 田媛;关于人脑胶质瘤中miR-144/451启动子区甲基化水平的实验研究[D];天津医科大学;2015年
4 王相玲;ICP4促进miR-101表达及miR-101调节HSV-1复制机制的研究[D];天津医科大学;2015年
5 吕东梅;苹果HMGR基因家族启动子的克隆及功能分析[D];山东农业大学;2016年
6 束进;人IRF-5基因的转录调控机制研究[D];南京医科大学;2016年
7 许文志;柳枝稷根及维管束组织特异性启动子的分离鉴定[D];四川农业大学;2015年
8 杨予涛;一个光合组织特异表达启动子的克隆、功能分析及其转录因子的鉴定[D];山东农业大学;2005年
9 杨晓敏;环加氧酶-2启动子区抑制性结合蛋白的鉴定和功能分析[D];南京医科大学;2007年
10 柳小庆;玉米胚特异性高表达启动子的基因组规模筛选、克隆和功能鉴定[D];中国农业科学院;2014年
相关硕士学位论文 前10条
1 余霜;家蚕血细胞特异启动子的筛选与鉴定[D];西南大学;2015年
2 王璇;水曲柳节律基因LHY启动子克隆及功能研究[D];东北林业大学;2015年
3 赵夏云;芥菜开花整合子SOC1的启动子克隆及其与FLC、SVP蛋白相互作用[D];西南大学;2015年
4 张鑫平;拟南芥和油菜花药特异表达启动子的克隆与功能分析[D];华中农业大学;2015年
5 于璐;受体相互作用蛋白激酶3转录调节特性研究[D];苏州大学;2015年
6 李玉姣;猪肝脏特异性TTR基因启动子驱动扣囊复膜孢酵母菌BGL1基因在转基因鼠中的表达验证[D];华中农业大学;2015年
7 郭凯庆;反向PCR精确定位人结肠癌SW480细胞CD133基因启动子区脱氧核糖核酸酶Ⅰ高敏感位点[D];山西医科大学;2015年
8 杨丹;大豆诱导型NAC转录因子基因启动子克隆及功能研究[D];山东大学;2015年
9 李杰;杨树木质部特异性启动子的功能及JCesAP关键调控域研究[D];河北农业大学;2015年
10 汪泽宇;c1orf109结合cyclin D1启动子序列特征研究[D];哈尔滨工业大学;2015年
,本文编号:2142459
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2142459.html