花生铁螯合酶1基因的克隆与及其在盐胁迫下的功能分析
[Abstract]:Arachis hypogaea L is one of the most important oil crops in our country and in the world. Because of its rich oil and protein, it has high nutritional value and economic value. The aggravation of industrial pollution and the improper use of agricultural irrigation measures and chemical fertilizer have caused the increase of the area of secondary saline and alkali land. The crop yield and quality of peanuts are seriously affected by the continued threat of peanut planting areas. Therefore, how to ensure stable yield, high yield and high quality of peanuts has become a major goal and technical problem for breeding. In order to achieve this goal and accelerate the improvement process of peanut varieties, researchers have gradually shifted the research direction to the molecular mechanism of salt tolerance. The study is aimed at genetic improvement of existing varieties by genetic engineering techniques and selecting new peanut varieties with salt tolerance to provide practical application for improving the yield and quality of peanut. Iron chelating enzyme catalyzes the synthesis of heme, which provides an auxiliary basis for the complex in the respiratory chain and the peroxidase. Hemoglobin is likely to be a signaling molecule to communicate plastids and nuclei and participate in drought stress response. This lesson is intended to clone peanut iron chelase 1 gene and study its function under salt stress. We use the Arabidopsis iron chelase 1 gene (AtFC1, GI: 145358447) as a probe to compare the peanut EST database in the search NCBI Two homologous EST sequences were obtained and the primers were designed according to the sequence after the splicing. The peanut leaves treated with salt stress were used as the test materials. The peanut iron chelating enzyme 1 gene was cloned by RT-PCR and RACE technology, and the bioinformatics analysis and function prediction were carried out. The gene was transiently expressed in the Arabidopsis protoplast. The fusion gene of fluorescent protein (GFP) determines its location in the cell and studies its function in salt stress response by overexpressing the gene in tobacco. The results are as follows: (1) a complete cDNA sequence of peanut iron chelating enzyme was cloned from the peanut leaves treated with salt stress, named AhFC1, which has been registered in Genbank KU560625. the full length of cDNA sequence is 1965 BP, the 5 'end non translation region is 157 BP, the open reading frame length is 1449 BP, the 3' end non translation region is 359 BP, the encoded protein contains 482 amino acids. (2) a variety of methods are used to predict the encoding protein of the protein. It is found that AhFC1 egg white has a highly conserved iron chelase N end and C terminal domain. There are several enzyme active sites on the two domains, and there is a transmembrane region at its C end, belonging to the II superfamily of the chelating enzyme, which is not dependent on ATP, and in the chloroplast compartment. In evolution, the relationship between the AhFC1 protein and the iron chelating enzyme of cucumber is closest. (3) the expression model analysis shows that the drought stress treatment can induce AhFC quickly. The expression of L increased, and then reached the maximum after 6h, and then began to decrease slowly. Compared with drought stress treatment, the AhFCl induced by salt stress was slowly rising, and the time needed to reach the peak was also relatively delayed, and the peak value reached to 12h, and then began to decline. (4) the germination rate of transgenic tobacco was significantly higher than that in the wild under salt stress. The heme of transgenic tobacco and wild type tobacco were decreased, but the content of heme of transgenic tobacco was significantly higher than that of wild type. The ROS content of transgenic tobacco leaves, MDA, electrical conductivity were significantly lower than that of wild type plants, while the activity of CAT, APX and other peroxidase activities in the heme supplemented group Although the SOD activity in transgenic tobacco and wild type tobacco leaves increased by salt stress, there was no significant difference between the two. The above results showed that overexpression of AhFCl gene increased the heme content and ROS scavenging ability of transgenic tobacco and alleviated the oxidative stress caused by salt. It is forced to enhance the salt tolerance of transgenic tobacco.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S565.2;Q943.2
【相似文献】
相关期刊论文 前10条
1 ;抗霉花生品种[J];浙江科技简报;1983年02期
2 梁丽琨;由翠荣;林荣双;郑秋生;肖显华;;花生基因工程[J];生物学通报;2005年10期
3 周录英;李向东;汤笑;林英杰;李宗奉;李宝龙;;氮、磷、钾肥配施对花生生理特性及产量、品质的影响[J];生态学报;2008年06期
4 陈高;徐凤花;单世华;张廷婷;孙兵;李春娟;闫彩霞;;花生抗病基因分离克隆研究进展[J];生物技术通讯;2009年02期
5 明德南;钱红;;花生高产不施氮栽培初获成功[J];今日科技;1989年03期
6 于惠英,曾宗德;花生增产剂的大田应用及其对花生形态与生理的影响[J];植物学通报;1991年04期
7 李思经;;美国花生品种基因转移成功[J];生物技术通报;1993年01期
8 李殿庆;昌吉市花生种植分析[J];新疆气象;1995年02期
9 姜广仁;;超高产多粒花生——驼峰大花生[J];科技致富向导;2005年01期
10 何永梅;;花生带壳播种好[J];科普天地(资讯版);2012年04期
相关会议论文 前10条
1 张廷婷;单世华;闫彩霞;李春娟;万书波;;花生抗黄曲霉基因的分离与初步鉴定[A];2009年中国作物学会学术年会论文摘要集[C];2009年
2 张廷婷;闫彩霞;郑奕雄;单世华;李春娟;刘宇;周西;;花生抗黄曲霉相关基因的克隆与表达[A];中国作物学会50周年庆祝会暨2011年学术年会论文集[C];2011年
3 唐月异;王传堂;;花生低温胁迫下抑制差减杂交文库的构建与分析[A];中国作物学会50周年庆祝会暨2011年学术年会论文集[C];2011年
4 杨莎;郭峰;王芳;孟静静;万书波;李新国;;外源施钙减轻高温强光胁迫下花生叶片光合作用的光抑制[A];2012年中国作物学会学术年会论文摘要集[C];2012年
5 杨莎;郭峰;王芳;孟静静;万书波;李新国;;外源施钙减轻高温强光胁迫下花生叶片光合作用的光抑制[A];山东植物生理学会第七次代表大会暨植物生物学与现代农业研讨会论文集[C];2012年
6 沈一;刘永惠;陈志德;;耐旱花生资源筛选与转录组研究[A];2013全国植物生物学大会论文集[C];2013年
7 庄东红;周敏;;谷氨酰胺和硝酸银对花生幼叶芽再生的促进作用[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年
8 潘丽娟;杨庆利;禹山林;;花生△~(12)脂肪酸脱氢酶与高油酸性状的关系[A];全国植物分子育种研讨会摘要集[C];2009年
9 迟晓元;杨庆利;和亚男;任增凯;禹山林;;花生幼苗全长cDNA文库的构建与分析[A];全国植物分子育种研讨会摘要集[C];2009年
10 张富全;张鹏;;地膜花生高产栽培技术[A];河南省植保学会第九次、河南省昆虫学会第八次、河南省植病学会第三次会员代表大会暨学术讨论会论文集[C];2009年
相关重要报纸文章 前10条
1 ;不含过敏原的花生品种被找到[N];今日信息报;2003年
2 本报记者 刘旭;花生产业蓝图还待重笔描绘[N];国际商报;2007年
3 定州市农业信息中心 王虎;花生市场逐渐升温[N];河北科技报;2006年
4 定州市农业信息中心 王虎;定州花生涨价 直接原因有仨[N];河北农民报;2006年
5 任江华 祝学庆;花生虽小市场大[N];粮油市场报;2006年
6 陈四化邋王化远;正阳小花生做成大文章[N];农民日报;2007年
7 王化远;正阳:花生大县唱红花生大戏[N];驻马店日报;2007年
8 经参;品种老化制约花生增产,,可否实施良种补贴[N];粮油市场报;2008年
9 本报记者 苏万明;四十余年风雨不变 品种老化制约花生增产[N];经济参考报;2008年
10 范杰;“花生王国”的龙型经济模式[N];中国特产报;2008年
相关博士学位论文 前10条
1 闫彩霞;栽培花生遗传多样性及产量品质性状的关联分析[D];山东农业大学;2015年
2 于淼;花生发芽过程中白藜芦醇富集技术与机理研究[D];沈阳农业大学;2016年
3 许涛;弹齿式花生捡拾装置设计及试验研究[D];沈阳农业大学;2016年
4 夏友霖;花生晚斑病抗性遗传特性研究[D];四川农业大学;2014年
5 关萌;全喂入花生摘果试验装置与摘果机关键部件研究[D];沈阳农业大学;2016年
6 陈团伟;福建主栽花生品质分析及花生加工新技术的研究[D];福建农林大学;2008年
7 禹山林;花生脂肪酸代谢关键酶基因的克隆与表达分析[D];南京农业大学;2008年
8 黄玉茜;花生连作障碍的效应及其作用机理研究[D];沈阳农业大学;2011年
9 王丽;蛋白用花生加工特性与品质评价技术研究[D];中国农业科学院;2012年
10 张佳蕾;不同品质类型花生品质形成差异的机理与调控[D];山东农业大学;2013年
相关硕士学位论文 前10条
1 张鹏;连续立式花生干燥器的研制[D];江西农业大学;2015年
2 韩全辉;木薯/花生不同间作模式的效应比较[D];海南大学;2014年
3 李文姗;山东省花生种植成本收益分析[D];山东农业大学;2015年
4 朱敦玮;花生对黄曲霉抗性的生理特性研究[D];福建农林大学;2015年
5 李伟烽;清流县赖坊花生产业化及发展策略研究[D];福建农林大学;2015年
6 吴海龙;山东花生根瘤菌遗传多样性及高效共生固氮菌株的筛选[D];中国科学院烟台海岸带研究所;2016年
7 张艳华;辽宁省花生根瘤菌的系统发育及应用研究[D];沈阳农业大学;2016年
8 刘玮;花生AhbHLH1参与调控FAD2基因在种子中表达的研究[D];山东大学;2016年
9 闫建美;花生铁螯合酶1基因的克隆与及其在盐胁迫下的功能分析[D];山东大学;2016年
10 回子健;三滚式小区育种花生脱壳装置试验研究[D];沈阳农业大学;2016年
本文编号:2156940
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2156940.html