飞蝗miRNA的合成及对表皮代谢相关基因的调控机制研究
[Abstract]:MicroRNAs (miRNAs) is a class of endogenous non coded RNA, which is about 22 NT in length, and participates in regulating a variety of life activities through post transcriptional regulation. Locust is an important agricultural pest in the world. The synthesis and degradation of epidermis plays an important role in the development of normal molting. The metabolism of chitin in cuticle epidermis is a The synthesis and degradation process of chitin is regulated by some key enzymes, such as chitin synthetase and chitinase, and the precise expression of chitin synthetase - chitin synthetase 1 (Chitin Synthase 1, CHS1) and chitinase 10 (Chitinase 10, CHT10) in the development of molt At the same time, our study found that LmDicer1 gene silencing in the miRNA synthesis pathway of locusts inhibited the synthesis of miRNAs in mature body and resulted in the abnormal death of locusts and molting. Therefore, we put forward scientific hypothesis that the miRNAs may participate in the regulation of key genes of epidermal metabolism and affect the normal molting development of insects. The effects of locusts LmDicer1 and LmAGO1 in the synthesis of MI RNA were studied, the miRNAs Library of locust and the regulatory mechanism of miRNA on the epidermal metabolism genes of locusts were updated. The main contents are as follows: 1, the construction of the small RNA Library of the locust and the identification of miRNAs by high throughput sequencing and experimental verification, we have identified 833 MiRNAs. found that with the expansion of the locust genome, the number of miRNA in the body increased correspondingly, and many of them were specific to the locust. RNAi technology was used to interfere with the key gene Drosha on the miRNA synthesis pathway, and the high flux sequencing of the miRNA was carried out. Compared with the control group (dsGFP), the authenticity of the miRNA library was further proved, and the miRNA of the locust was miRNA. Identification studies have laid the foundation for revealing the biological function of miRNA in the locust. The effect of LmDicer1 on miRNA synthesis and the development of the molting of locusts in order to clarify the role of Dicer1 in miRNA synthesis and the effect on the life of locust in the miRNA synthesis pathway of locusts, we use RNA interference (RNAi) and fluorescent quantitative PCR (RT-qP). CR) and other techniques to analyze the expression characteristics of LmDicer1 and the effect on miRNA synthesis in the locust. The results show that interference of LmDicer1 can inhibit the synthesis of miRNA in locusts, thus affecting the development of the molting of locusts, resulting in abnormal.3 of the molt of locusts, and the role of Argonaute 1 in the synthesis of miRNA and the development of locusts in order to clarify the miRNA synthesis pathway The key factor, Argonaute 1 (AGO1), in the formation of miRNA, we use RNA interference (RNAi) and fluorescence quantitative PCR (RT-qPCR) to analyze the expression of LmAGO1 and its effect on the formation of miRNA in the body. It is found that the AGO1 protein of locusts can not only combine with miRNA forming RISC complex to guide the binding of the target gene, but also have the nucleic acid internal cutting. The action of enzymes involved in the synthesis and expression of miRNA in the mature body of the body, affecting the normal growth and development of the locust,.4, and the regulation of miRNAs on the chitin synthetase and degrading enzyme genes of the cuticle epidermis. We further studied the function of miRNAs in the development of the molting of locusts. Using bioinformatics methods, we have predicted miR-71 and miR-263 and the CH of locust respectively. There was a binding site between S1 and CHT10, and the expression of miR-71 and miR-263 was negatively correlated with the expression of LmCHS1 and LmCHT10 by RT-qPCR detection. The use of in vitro luciferase experiment and RNA immunoprecipitation (RIP) experimental analysis found that miR-71 and miR-263 were directly used for LmCHS1 and LmCHT10, respectively. Agents and inhibitors were found to overexpress or silence miR-71/miR-263 in the body. Compared with the control group, locusts died of molting difficulties. The results showed that the miR-71 and miR-263 of locusts affected the synthesis of the new epidermal chitin and the degradation of the old epidermal chitin by regulating the expression of LmCHS1 and LmCHT10 respectively, resulting in the abnormal death of the cuticle and the death of.5 in the molting of the locust. MiRNAs regulates the epidermal metabolism genes of locusts in order to explore the regulation of miRNAs on other key genes of epidermal metabolism. We further selected key genes involved in epidermal metabolism: fatty acid synthase (FAS), UDP-N- acetaminophen pyrophosphorylase (UDP-N-acetylglucosamine pyrophorylase, U). AP), glycosyltransferase (asparagine-linked glycosylation protein 5, ALG5) and Sinuous predicted the potential miRNAs in combination with these key genes through bioinformatics, and tested the interaction between the epidermal metabolism gene and miRNAs through RT-qPCR, in vitro immunoprecipitation (RIP) and in vitro luciferase. The potential combination of 4 key epidermal metabolic genes, UAP, ALG5, FAS, and Sinuous, is miRNA-2796, miRNA-275, miRNA-276b and miRNA-184, respectively, and these miRNAs respectively interact with 4 epidermal metabolism genes, which may regulate the target gene expression. In summary, this paper systematically clarifies the combination of the miRNAs of locusts. The results will provide important scientific basis for the screening of the potential small molecular targets in the control of locusts and the design of environmentally friendly green drugs by identifying and revealing the molecular regulation mechanism of miRNAs in the development of molt.
【学位授予单位】:山西大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:Q963
【相似文献】
相关期刊论文 前10条
1 俞秀冲;宋皓军;郭俊明;;MiRNA影响胃癌转移的机制[J];中国生物化学与分子生物学报;2011年10期
2 蔺芳;张家洋;皮川真;徐存拴;;氧及活性氧代谢相关基因在大鼠肝脏再生中的作用[J];动物医学进展;2010年10期
3 于永生;罗晓彤;金海国;赵越超;;多胺代谢相关基因在小鼠子宫内膜细胞中的调节[J];中国农业大学学报;2009年03期
4 李君,曾中文,欧阳石文;微生物几丁质酶的特性、基因表达调控及应用[J];微生物学通报;2001年04期
5 赵晓琴,李冠;几丁质酶研究进展[J];新疆大学学报(自然科学版);2003年04期
6 陈少波,吴根福;几丁质酶研究进展[J];科技通报;2004年03期
7 关海宁;徐桂花;刁小琴;;微生物产几丁质酶的研究概况及其应用[J];中国食物与营养;2006年08期
8 黄乾生;谢晓兰;陈清西;;几丁质酶的结构特征与功能[J];厦门大学学报(自然科学版);2008年S2期
9 李春霞;佟永薇;侯世洁;;微生物几丁质酶的研究进展[J];食品研究与开发;2008年08期
10 陈崇顺,徐凤彩,李明启;21科41种(变种)植物叶片几丁质酶系的研究[J];植物资源与环境;1993年04期
相关会议论文 前10条
1 武宇晓;杨国宇;李宏基;王月影;朱河水;王林枫;;仔猪体内铁代谢相关基因的组织分布[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年
2 陈崇顺;朱雪峰;郁志芳;;蔬菜植物几丁质酶最新研究评述[A];中国科协第3届青年学术年会园艺学卫星会议暨中国园艺学会第2届青年学术讨论会论文集[C];1998年
3 周洪妹;郭庆港;李社增;鹿秀云;马平;;几丁质酶产生菌的筛选及其基因克隆[A];中国植物病理学会2009年学术年会论文集[C];2009年
4 刘明艳;田玉敬;张洪斌;;昆虫几丁质酶的分离纯化及其抑制剂筛选的研究[A];2010年中国药学大会暨第十届中国药师周论文集[C];2010年
5 蔡银杰;;几丁质用于植物病害生物防治——几丁质对土壤微生物的作用[A];全国生物防治学术讨论会论文摘要集[C];1995年
6 林毅;方光伟;彭琨;;苏云金杆菌4H2菌株几丁质酶产生条件的研究[A];第一届全国化学工程与生物化工年会论文摘要集(下)[C];2004年
7 王海东;宋小慧;何腾腾;胡忠;;海洋微生物新几丁质酶编码基因的探索[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
8 郝之奎;蔡宇杰;廖祥儒;张峰;童超;;一株产几丁质酶细菌的筛选与鉴定[A];华东六省一市生物化学与分子生物学会2010年学术交流会论文集[C];2010年
9 张文娟;李聪;王步云;;几丁质酶与苜蓿抗病性研究[A];中国草学会牧草育种委员会第七届代表大会论文集[C];2009年
10 申屠旭萍;俞晓平;;几丁质酶抑制剂的研究进展[A];第三届全国绿色环保农药新技术、新产品交流会暨第二届全国生物农药研讨会论文集[C];2004年
相关重要报纸文章 前1条
1 记者 林岳夫;海洋微生物几丁质酶研究取得进展[N];中国海洋报;2001年
相关博士学位论文 前10条
1 王艳丽;飞蝗miRNA的合成及对表皮代谢相关基因的调控机制研究[D];山西大学;2017年
2 欧阳伟;鸡体抗传染性法氏囊病病毒天然免疫基因的miRNA调控机制[D];南京农业大学;2016年
3 孙小川;应用生物组学分析鉴定萝卜盐胁迫响应相关基因与miRNA[D];南京农业大学;2016年
4 谢水华;长白猪和蓝塘猪肌肉发育差异miRNA和mRNA表达谱的整合分析[D];中山大学;2017年
5 张桂山;辽宁绒山羊与乾华肉用美利奴羊皮肤毛囊miRNA筛选及靶基因验证[D];吉林农业大学;2016年
6 汪正飞;鲸类脂肪代谢相关基因的进化及其与水生适应的关系[D];南京师范大学;2016年
7 李华南;大白猪和清平猪分娩启动过程中miRNA表达分析和miR-144功能研究[D];华中农业大学;2017年
8 于志强;REV感染对SPF雏鸡miRNA及其靶基因mRNA表达的影响[D];东北农业大学;2017年
9 于荣荣;飞蝗表皮几丁质有序排列关键基因的功能研究[D];山西大学;2017年
10 郝之奎;Chitinolyticbacter meiyuanensis的筛选鉴定及其发酵产几丁质酶研究[D];江南大学;2011年
相关硕士学位论文 前10条
1 王诗鸣;MiRNA-疾病关联关系算法研究[D];哈尔滨工业大学;2017年
2 崔铭萱;妊娠期血脂水平的相关基因多态性研究及含不同miRNA结合位点基因序列的质粒构建[D];北京协和医学院;2017年
3 杨攀;非小细胞肺癌尿液游离miRNA液态活检及其临床意义[D];宁波大学;2017年
4 付蓉;玉米自交系盐胁迫响应miRNA及其靶基因的鉴定研究[D];南通大学;2016年
5 张雅娜;MiRNA机制相关蛋白在不同类型慢性鼻-鼻窦炎中的表达[D];华中科技大学;2011年
6 陈俊;Ⅱ-Ⅲ期胸中段食管鳞癌放化疗敏感性相关血清miRNA的筛选[D];山西医科大学;2017年
7 杨琳;哑铃型探针滚环扩增检测miRNA及新型卟啉化合物的合成与性质[D];天津大学;2016年
8 周渊;EZH2基因和MiRNA网络基因单核苷酸多态性与胃癌风险性研究[D];安徽医科大学;2012年
9 张通;水飞蓟的基源鉴定与质量评价及其miRNA的分析[D];浙江理工大学;2017年
10 刘敏;茶主要涩味物质代谢相关基因的差异表达分析[D];扬州大学;2015年
,本文编号:2158175
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2158175.html