肿瘤驱动基因的分析预测及其在肝癌中功能的初步研究
[Abstract]:Cancer driver genes (tumor driven gene genes) has always been a hot spot in oncology research. At present, a variety of tools based on tumor genomics have been developed, in which the dJ/dS method identified the new tumor driven gene.DJ/dS from the splice site of the exon (exon) and Chi Ko (intron) from different angles (J). Unction site, J) mutation, if the J site mutation, then the pre-mRNA splicing process failed, and then can not produce normal mature mRNA, resulting in the loss of gene function (loss of function), and finally induced cell cancerization. Based on this idea, the method uses the principle of the calculation of dN/dS of the legacy tool dN/dS, and uses Junction mutation and Junction. The ratio of ymous mutation (S) observation value (obs_JS) is divided by the ratio of expected values (exp_JS), that is, dJ/dS=obs_JS/exp_JS, if dJ/dS1, there is a positive selection effect; if dJ/dS1 believes that there is a purification selection effect; if dJ/dS=1 believes that there is no selective pressure. We think that the driving gene is positive in the carcinogenesis. Compared to other methods, D, D. J/dS better controls the background mutation rate (background mutation rate, BMR) and improves the sensitivity of the method. However, there are still two shortcomings: first, dJ/dS only calculates the mutation on the splice donor (GT) and splice acceptor (rate) when the J mutation is considered, and there is a study showing that the four loci are near the mutation. It also causes splicing failure, causing disease to occur, so it is more accurate to incorporate the area around the splice site into J; two, dJ/dS only considers 12 mutation types when calculating the mutation spectrum (mutation spectrum), but the base N (ATCG) that is reported to be adjacent to the mutation site may greatly affect the mutation, so 96 kinds of mutation spectrum are used. Type calculation is more scientific. Therefore, in this study, we improve the above two points of dJ/dS, develop the dJ/dS2.0 version, and combine the data of 33 solid tumors of the TCGA (The Cancer Genome Atlas) to reanalyze the tumor driving genes. It is very complicated that oncogene and tumor suppressor gene play an important regulatory role in the process of carcinogenesis. Many factors can affect the mutation of oncogene and tumor suppressor gene. There is a research report that human species and sex are important factors affecting gene mutation, and some gene mutations will make the tumor be worse after the tumor. We will discuss the model of liver cancer as a study model. Liver cancer is the sixth most common malignant tumor in the world, with a high mortality rate of third, more than 70 million new cases each year, and increasing year by year. Surgical resection is the most effective treatment for early liver cancer, but the recurrence rate of five years after surgery is more than 50%. in recent years, with the rapid development of sequencing technology. Great progress has been made in the study of hepatoma genomics, which provides new technical means for screening gene markers for clinical diagnosis and prognosis. This study is intended to be carried out in two aspects: (1) improving the dJ/dS method and identifying the tumor driven genes; (2) hepatocellular carcinoma as a research model, combined with the prediction results of dJ/ dS2.0, dT/dS and MutSig2.0, preliminary analysis The function of driving genes in liver cancer. Purpose 1. to improve the dJ/dS algorithm, to develop the dJ/dS2.0 version, and to apply it to the prediction of dJ/dS2.0 tumor driven genes; 2. to study the function of the driving genes in the liver cancer. Research method (1) the data of the improved 1.dJ/dS2. for the dJ/dS algorithm: This study included the data.2.dJ/ of 33 kinds of solid tumors of TCGA. DS2.0 calculation method a) calculation of mutation spectrum: the mutation spectrum of each tumor is calculated at four times of degenerate loci without the influence of selected pressure. At the same time, 96 mutation types are used to express the mutation spectrum, that is, the base of the mutation site, such as NCNNTN, N representing ATCG; b) J process, is calculated on the basis of the original dJ/dS method J 3 bases and 6 bases on the exons adjacent to the splice site, a total of 11 mutation sites, and a total of 11 mutation sites; c) S mutation calculation principle: integrating all the synonymous mutations on each gene; d) calculating the expected JS ratio (exp_JS): the expectation of each gene's J and S (expectation, exp) by the previous mutation spectrum, and then J, respectively, are used for J. The expectation value is compared with the expected value of the upper S, that is, exp_JS = exp_J/exp_S; E) to calculate the actual JS ratio (obs_JS): the observed values of J and S (observation, OBS) from the TCGA exons sequencing data are calculated, and then the ratio of the actual observed values is divided by the observed values of J. The ratio obtained dJ/dS ratio, dJ/dS obs_J S/exp_J S; (two) the function of the driving genes in the liver cancer 1. the source of liver cancer data: TCGA and ICGC; the identification of 2. driving genes and pathways: comprehensive dJ/dS2.0, dT/dS and MutSig2.0 three methods in the identification of liver cancer data, and using the obtained driving genes for pathway analysis (pathway analy) SIS): functional analysis of 3. driving genes: combined with the clinical data of liver cancer, analysis of the mutation difference between the driving genes and pathways in human and sex, and the effect on the prognosis of liver cancer. (three) statistical analysis of 1.dJ/dS2.0 statistical analysis a) P and FDR calculation: using two distribution tests to calculate the corresponding p value of each gene, and use Benjamini-Hochberg at the same time. The method controls FDR (false discovery rate); when the gene is dJ/dS1 and FDR is less than 0.05, it is considered to be the driving gene; b) GO functional analysis: GO function clustering analysis using GOrilla, FDR less than 0.05 Statistical significance; b) using the Fisher exact probability method to compare the distribution of driving genes and pathways between human and sex; P0.05 considered statistically significant; c) survival analysis: using the Kaplan-Meier survival curve to drive the gene to the prognosis of the gene, using the log-rank test to calculate the p value, and using the Cox proportional risk regression model for multifactor analysis; P 0.05 (0.05) the results (1) the mutation spectrum of the dJ/dS2.01.33 tumor is improved by increasing the analysis site and splitting the mutation spectrum in the splicing region, developing the dJ/dS2.0 version and applying it to the TCGA33 tumor to get a more accurate mutation spectrum.A) the high frequency mutation type CT is the majority of the tumors. In the case of mutation, the mutation rate of CpGTpG is the highest, but the highest mutation rate in the skin melanoma is CpCCpT and TpCTpT.b). The mutation of renal carcinoma subtypes is characterized mainly by CpGTpG, and the renal clear cell carcinoma is mainly CCGCAG, CCGCTG and GCGGTG, while the renal papillary cell carcinoma is in the renal clear cell carcinoma mutation type. On the basis of the CCACAA and CCCCAC.2. driving genes, 7 kinds of tumors, including adrenocortical cancer, cholangiocarcinoma, FPPP, renal chromophobe cell carcinoma, diffuse large B cell lymphoma, uterine carcinosarcoma and testicular germ cell tumor, were not identified, and dJ/dS2.0 was identified in 26 of the driving genes. It is worth noting that endometrial cancer appears much more. Up to 344 genes, we suspect that TCGA data may have abnormal or part of the gene in endometrial cancer more prone to splicing region mutation, resulting in dJ/dS2.0 insensitivity and lead to excessive false positive. Therefore, we remove the identification of endometrial cancer and use only the results of the remaining 25 tumors for subsequent analysis of.A) the driving of 25 kinds of tumors. The gene dJ/dS2.0 identified 643 non redundant tumor driven genes in 25 solid tumors. In addition to 73 CGC annotated as driving genes, another 570 (88.8%) was a newly predicted drive gene; b) GO functional analysis carried out GO clustering analysis of 570 driving genes. The results showed that many genes were aggregated in development and maintenance. Cytoplasmic related GO term (GO:0044243, multicellular organismal catabolic process, p=2.53E-12, FDR=1.52E-8). (two) functional analysis of the driving genes in liver cancer 1. the driving genes of the liver cancer in order to more comprehensively analyze the function of the driving genes, we combine the data of the liver cancer in TCGA and ICGC to increase the sample size, in the application of dJ/dS2. 0 at the same time, we also used the MutSig2.0 method developed by our lab group dT/dS and TCGA respectively. Three methods were used to identify 89 driving genes. The 89 genes were found to be enriched in 10 signal pathways related to virus infection or tumor by KEGG pathway analysis. The characteristics of the mutation types of the 2. liver cancer driving genes were compared. At present, the mutation types of liver cancer drive genes are different in proportion. In CTNNB1, TP53 and RB1 genes with higher mutation frequency, the proportion of non synonymous mutations is more than 95%, of which CTNNB1 and TP53 are mainly missense mutations, while insertion loss, missense mutation, splicing region mutation and nonsense mutation coexist in RB1; 3. and sex influence drivers Distribution genes TP53 and RB1 and pathway hsa05161 and hsa05203 are more likely to be mutated in Asian descent. The incidence of CTNNB1, ALB, PIK3CA, BAP1 and hsa05200 pathways in men is higher than that of women; 4. survival analysis, by single factor screening and multifactor analysis, gene KCNB2 (p=0.025), KCNJ12 (KCNJ12), etc., and If the hepatitis B infection pathway hsa05161 (p=0.006) mutation occurs, the median survival time of the patients is shortened and the mortality risk is increased. Conclusion the first chapter: dJ/dS2.01. improves the dJ/dS algorithm and improves the accuracy; 2. the driving genes identified by dJ/dS2.0 are involved in the development of multicellular and maintenance rings; and the second chapter: functional analysis of the driving gene in liver cancer 1. The sex and ethnicity of the patients with liver cancer may affect the distribution of the driving gene mutation; the 2. driven gene KCNB2, KCNJ12, RB1, TP53 and the hsa05161 mutation in the hepatitis B infection pathway are adverse factors for the prognosis of liver cancer, which may be a potentially clinical marker.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R735.7
【相似文献】
相关期刊论文 前10条
1 欧阳军;;基因与长寿[J];家庭中医药;2006年10期
2 文辉;人到底有多少个基因?[J];百科知识;2003年11期
3 张丽华;侯振江;;p53基因在肺癌研究中的进展[J];临床肺科杂志;2006年01期
4 程鹏,童茂荣;p53基因在肺癌的治疗及预后中的价值[J];江苏医药;2000年03期
5 卢薇薇;仇容;;nm23基因的研究进展[J];中国实用医药;2008年30期
6 张爱菊;P~(53)基因与人类肿瘤[J];医学综述;1998年08期
7 熊建新,吴子忠;p53基因与肺癌[J];中国煤炭工业医学杂志;1999年01期
8 姚松朝;李辉;;p53基因与肺癌[J];海军医学;1995年01期
9 王武;卢辉山;;KAI1基因与消化道恶性肿瘤关系的研究现状[J];医学综述;2007年07期
10 马秀华,李翠萍,王建伟;Rb与P~(16)基因在肺癌组织中的表达及其意义[J];山东医药;1999年19期
相关会议论文 前10条
1 张蕊;Liang Zhao;Tom Gonda;;慢病毒介导的多西环素可诱导式短发夹RNA抑制K562细胞系e-myb基因的表达[A];中华医学会第十四次全国儿科学术会议论文汇编[C];2006年
2 高艳红;岳文;秦立鹏;张鹏;陈琳;裴雪涛;;人Spindlin1基因的功能初探[A];第九届全国实验血液学会议论文摘要汇编[C];2003年
3 王卫东;陈正堂;李德志;;肿瘤治疗新策略——基因—放射治疗:原理、现状及展望[A];中华医学会放射肿瘤治疗学分会六届二次暨中国抗癌协会肿瘤放疗专业委员会二届二次学术会议论文集[C];2009年
4 王今达;;21世纪生命科学飞跃发展的基础——基因工程[A];2000年全国危重病急救医学学术会议论文集[C];2000年
5 李宝健;许新萍;冯道荣;范钦;朱华晨;林莉;;论改良生物体遗传性的多基因策略——Ⅰ.多基因改良策略将成为未来基因工程的主流方向[A];中国生物工程学会第三次全国会员代表大会暨学术讨论会论文摘要集[C];2001年
6 王根轩;;基因表达格局与植物数量性状的控制[A];全国植物分子生物学与生物技术学术研讨会论文集[C];2000年
7 彭志宏;黄柏胜;文芳;韩仰;刘发益;邬力祥;;Mettl9基因对U251细胞生长的影响及机制研究[A];湖南省生理科学会2013年度学术年会论文摘要汇编[C];2013年
8 付凌洁;张淑兰;;RASSF1A基因在卵巢癌中的表达及其对增殖、凋亡的影响[A];东北三省第四届妇产科学术会议论文汇编[C];2008年
9 钱伟;何云刚;赖建华;舒坤贤;谭德勇;余敏;;p53基因对mybbp1a(p160)基因的正调控作用研究[A];中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议论文摘要集[C];2001年
10 薛世伟;林艳丽;熊福银;吴晓洁;周艳荣;郭虹敏;陈红星;陈树林;;人Nanog基因的克隆及其在CHO-K1细胞中的表达[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十六次学术研讨会论文集[C];2010年
相关重要报纸文章 前10条
1 全国政协委员 民盟中央委员 曹义孙;立法规范基因检测[N];团结报;2010年
2 吕回;鸟儿会唱人会说 只缘基因太相似[N];广东科技报;2004年
3 ;认识我们的基因[N];科技日报;2003年
4 本报记者 张丽;基因可以透视明天吗[N];中国消费者报;2001年
5 姜海;科学家发现新的致盲基因[N];科技日报;2007年
6 徐阳;基因与长寿[N];光明日报;2000年
7 记者 林小春 任海军;美国研究表明懒或许源于基因[N];新华每日电讯;2013年
8 卢菁;怕胖可就是管不住嘴,原是基因作怪[N];新华每日电讯;2008年
9 本报记者 卢雁妮;“从对生命及疾病本源的认识到基因科技造福人类”讲座开讲[N];黔西南日报;2014年
10 张小军;美发现老鼠性别新基因[N];医药经济报;2001年
相关博士学位论文 前10条
1 刘芳;RB94基因在非小细胞肺癌治疗中的作用及机制研究[D];山东大学;2015年
2 王宗丹;远程调控元件mbr选择性协调BCL2和NOXA基因转录活性的机制研究[D];南京医科大学;2013年
3 王晓乐;水稻脆鞘基因BSH1的图位克隆与功能分析[D];中国农业科学院;2015年
4 刘莉莉;奶牛产奶性状候选功能基因VPS28的功能验证[D];中国农业大学;2016年
5 王义涛;ACER2是一个新的通过促ROS产生而诱发自噬与凋亡的p53靶基因[D];重庆医科大学;2017年
6 廖传文;WTX基因调控肝癌细胞增殖及侵袭转移的机制研究[D];南昌大学;2016年
7 金旭;心血管内靶向定位基因递送体系—载基因支架的实验研究[D];中国协和医科大学;2006年
8 杨春霞;生活方式和基因多态与食道癌的关系[D];四川大学;2005年
9 吴汉林;人NIT1基因cDNA的克隆、原核表达及抗体制备[D];四川大学;2005年
10 何勇;p73基因在人肺癌中的表达及对其细胞生物学行为的影响[D];第三军医大学;2004年
相关硕士学位论文 前10条
1 邓小冬;ERCC1、XPF和XPG基因在法医学年龄推断中的初步研究[D];川北医学院;2015年
2 张润贤;论基因权的私权属性及民法保护[D];东北林业大学;2015年
3 刘伟;家蚕受体酪氨酸激酶样的孤独受体Ror2基因功能的研究[D];苏州大学;2015年
4 卫姣;铜离子感应基因MAC1转录机理的研究[D];郑州大学;2015年
5 杨镇宇;禁食—恢复投喂条件下鲢神经肽Y及三个瘦素相关基因的表达分析[D];华中农业大学;2015年
6 周彦宽;Fam49b基因在人类细胞系中的定向敲除及其功能研究[D];浙江大学;2015年
7 刘如锦;病毒巨噬细胞炎症蛋白Ⅱ调控抗HIV-1基因APOBEC3G表达机制的初步探讨[D];杭州师范大学;2015年
8 罗萌萌;HEPIS基因功能的初步研究[D];华北理工大学;2015年
9 梁一丹;应用双荧光素酶报告载体研究上游开放阅读框的突变对靶基因的影响[D];南方医科大学;2015年
10 李霞;miRNA靶基因优选及网络分析[D];天津医科大学;2015年
,本文编号:2167473
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2167473.html