当前位置:主页 > 科技论文 > 基因论文 >

毛竹生长过程中纤维素合成酶基因的表达模式和功能分析

发布时间:2018-08-08 12:13
【摘要】:毛竹是中国主要的用材竹种,纤维素的合成是竹材形成的必要条件。纤维素主要由纤维素合成酶(Cellulose synthase,Ces A)合成,并储存在植物的初生壁和次生壁中。因此,研究纤维素合成酶的结构与功能对毛竹生长发育以及纤维素的利用有重要指导意义。本研究以毛竹生长过程中不同时期的5个高度(10cm、30cm、120cm、600cm、1400cm)的毛竹为研究材料,其中10cm和30cm时为毛竹生长初期,120cm为毛竹生长上升期,600cm左右为毛竹生长盛期,1400cm时毛竹开始抽枝展叶,为生长末期,通过生物信息学方法、生物显微镜观察、透射电镜观察、荧光定量PCR、RNA原位杂交、Western Blot、蛋白质的体外表达等方法研究了毛竹纤维素合成酶基因的表达和功能。所得结论如下:(1)毛竹茎秆结构显微观察表明毛竹生长发育分为四个时期,第一个时期,细胞未分化期,没有明显的组织结构,此时的细胞主要以分裂产生更多的细胞为主。第二个时期,原生结构形成期,有典型的维管束结构出现,但密度较大,结构较小,韧皮部细胞分化不明显,纤维细胞和薄壁细胞的界限不明确。第三个时期,维管束结构成熟期,纤维细胞和薄壁细胞的界限明确,有两个典型的后生木质部导管,韧皮部结构明显。第四个时期,纤维细胞木质化时期,可以看到纤维细胞周围一层深色物质。基部的纤维组织最先出现木质化,此时为毛竹生长的上升期,茎秆的高度大约为120cm。(2)毛竹韧皮部细胞超微结构观察发现,毛竹生长发育过程可分为初生壁形成期,次生壁形成期,以及次生壁加厚期。研究表明次生壁随着高度的增加而加厚,上升期(120cm)的毛竹基部可观察到次生壁出现,盛期(600cm)的毛竹中部和基部有次生壁结构,顶部和根部仅有初生壁,末期(14m)毛竹基部次生壁比盛期厚。(3)生物信息学分析表明,毛竹纤维素合成酶家族基因共有16个成员,结构域分析表明,毛竹纤维素合成酶都含有cellulose_synt结构域,N端大多有Zn指结构,毛竹纤维素合成酶超家族成员有48个,分为5个亚家族,分别是CESA、CSLD、CSLE、CSLF、CSLH。系统进化分析表明,Ces A基因极有可能在单、双子叶植物分化前就已经出现分化。祖先状态时,毛竹中的纤维素合成酶基因就比拟南芥和水稻多。物种分化之后,毛竹纤维素合成酶基因也单独发生了多次重复事件,产生了更多的基因拷贝数,这可能和毛竹独特的快速生长特性有关。(4)在前人对毛竹茎秆中纤维素含量的研究基础上,结合显微和超微观察结果以及定量表达结果进行分析发现,在初生壁形成的部位,3个基因(PeCesA6、PeCesA9和PeCesA13)表达最显著。在次生壁形成的部位,毛竹纤维素合成酶基因家族成员的8个基因(PeCesA1、PeCesA2、PeCesA3、PeCesA4、PeCesA5、PeCesA6、PeCesA9、和PeCesA13)表达均非常显著。推测PeCesA6、PeCesA9、PeCesA13对初生壁和次生壁的形成都起到重要作用,而PeCesA1、PeCesA2、PeCesA3、PeCesA4、PeCesA5基因主要参与毛竹次生壁的合成。(5)毛竹纤维素合成酶保守结构域体外表达的蛋白为包涵体,经Western blot检测后确定为该蛋白的表达,表达产物的分子量为33KDa,p I为7.4。
[Abstract]:Phyllostachys pubescens are the main timber species in China. The synthesis of cellulose is a necessary condition for the formation of bamboo. Cellulose is mainly synthesized by Cellulose synthase (Ces A) and stored in the primary wall and secondary wall of the plant. Therefore, the structure and function of cellulose synthase have been studied for the growth and development of Phyllostachys pubescens and the use of cellulose. This study uses 5 height (10cm, 30cm, 120cm, 600cm, 1400cm) of Phyllostachys pubescens in the growth process of Phyllostachys pubescens as the research materials, in which 10cm and 30cm are the initial growth period of Phyllostachys pubescens, 120cm is the growth period of Phyllostachys pubescens, and 600cm is the growth stage of the bamboo, while 1400cm starts to branch out, for the end of growth and through biology. The methods of Informatics, biological microscopy, transmission electron microscopy, fluorescence quantitative PCR, RNA in situ hybridization, Western Blot, protein expression and other methods were used to study the expression and function of the gene of bamboo cellulose synthase. The conclusions are as follows: (1) the growth and development of Phyllostachys pubescens are divided into four periods, the first one is the first one. During the undifferentiated period of the cells, there was no obvious tissue structure. At this time, the cells were mainly divided to produce more cells mainly. Second periods, the primary structure formation period, the typical vascular bundle structure appeared, but the density was large, the structure was small, the phloem cell differentiation was not obvious, and the boundaries of the fibroblast and parenchyma cells were not clear. Third During the period of the mature period of vascular bundle structure, the boundaries of fibroblast and parenchyma cells are clear, there are two typical posterior xylem ducts and the phloem structure is obvious. In the fourth period, the fiber cells lignification period can see the dark substance around the fiber cells. The fibrous tissue of the base is first lignification, at this time it is the growth of Phyllostachys pubescens. The height of the stem is about 120cm. (2) in the phloem ultrastructure of the Phyllostachys pubescens. It is found that the process of growth and development of bamboo can be divided into primary wall formation period, secondary wall formation period, and secondary wall thickening period. The secondary wall thickens with the height increase, and secondary wall can be observed in the base of the up period (120cm). There are secondary wall structures in the middle and base of 600cm, the top and the root are only primary wall, and the secondary wall of the base of bamboo is more thick than that in the end (14m). (3) bioinformatics analysis shows that there are 16 members of the Phyllostachys pubescens cellulose synthase family gene. The analysis of the Phyllostachys pubescens cellulose synthase contains the cellulose_synt domain and the N end. Most of them have Zn finger structure. There are 48 superfamily members of Phyllostachys pubescens cellulose synthase superfamily, which are divided into 5 subfamilies. The phylogenetic analysis of CESA, CSLD, CSLE, CSLF, CSLH. shows that the Ces A gene is very likely to be differentiated before the differentiation of the dicotyledonous plants. The cellulose synthase genes in the forefathers were compared to the southern mustard and water. After species differentiation, the Phyllostachys pubescens cellulose synthetase gene has also been repeated several times, producing more copies of the gene, which may be related to the unique rapid growth characteristics of bamboo. (4) on the basis of previous studies on cellulose content in bamboo stems, combined with microscopic and ultramicro observation results and quantitative expression junctions. The 3 genes (PeCesA6, PeCesA9 and PeCesA13) expressed most significantly at the site of primary wall formation, and 8 genes (PeCesA1, PeCesA2, PeCesA3, PeCesA4, PeCesA5, PeCesA6, PeCesA9, and PeCesA13) were very significant in the parts of the secondary wall formation. PeCesA13 plays an important role in the form of primary wall and secondary wall of Chengdu, while PeCesA1, PeCesA2, PeCesA3, PeCesA4, PeCesA5 genes are mainly involved in the synthesis of the secondary wall of Phyllostachys pubescens. (5) the protein expressed in the conservative domain of bamboo cellulose synthase is inclusion body, which is determined by Western blot as the expression of the protein and the molecule of the expression product. The amount is 33KDa, and P I is 7.4.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:Q943.2;S795.7

【相似文献】

相关期刊论文 前10条

1 周晓馥,王景余,王兴智;植物纤维素合成酶基因的研究进展[J];遗传;2002年03期

2 吕慧贞;陈新;穆清泉;张士刚;张元湖;;苹果α-法尼烯合成酶基因双链RNAi载体的构建[J];生物技术通报;2007年03期

3 王西平;刘斌;王跃进;;毛葡萄芪合成酶基因的克隆及序列分析[J];西北植物学报;2007年08期

4 刘栋;白永延;;脯氨酸合成酶基因和植物的抗盐性[J];生物科学信息;1989年01期

5 黄伟伟;杨曦;张常娥;方斌;马靓;常俊丽;杨广笑;何光源;;烟草黄酮醇合成酶基因的克隆及其序列分析[J];植物生理学通讯;2006年06期

6 李益;胡尚连;卢学琴;蒋瑶;黄胜雄;李向前;;植物纤维素合成酶基因的进化分析[J];华北农学报;2008年02期

7 唐亮;马香;周志钦;;植物萜类合成酶的进化研究[J];西南大学学报(自然科学版);2014年04期

8 王育花;肖国樱;;烟酰胺合成酶基因在植物铁胁迫应答反应中的功能[J];生命科学研究;2009年04期

9 孙国凤;日克隆成功柑橘抗癌成分β隐黄素合成酶[J];生物技术通报;1999年05期

10 郑世刚;李臻;赵善仓;王庆国;刘炜;;白藜芦醇合成酶基因在基因工程中的应用及功能研究进展[J];生物工程学报;2014年03期

相关会议论文 前10条

1 付明;;显齿蛇葡萄CHS基因cDNA克隆及蛋白质序列分析[A];生命的分子机器及其调控网络——2012年全国生物化学与分子生物学学术大会摘要集[C];2012年

2 吴双秀;沈蓉蓉;章秀;王全喜;;发壮念珠藻麦芽寡糖基海藻糖合成酶基因的克隆的特性[A];第六届中国植物逆境生理学与分子生物学学术研讨会论文摘要汇编[C];2010年

3 吕慧贞;张士刚;刘静;张元湖;;α-Farnesene合成酶基因转入烟草中的研究[A];2007中国植物生理学会全国学术会议论文摘要汇编[C];2007年

4 王宁宁;常怡雍;杨祥发;;欧氏酸诱导蝴蝶兰衰老过程中ACC合成酶基因表达的研究[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年

5 王宁宁;汤雪奴;常立;;拟南芥ACC合成酶基因家族调控网络的初步研究[A];2007中国植物生理学会全国学术会议论文摘要汇编[C];2007年

6 倪华;杨增明;倪江;;前列腺素D合成酶基因和PGD_2的受体DP基因在围着床期小鼠子宫中的差异性表达[A];中国生理学会2004年消化内分泌生殖学术研讨会论文摘要汇编[C];2004年

7 汤雪奴;常立;林霖;王宁宁;;植物激素对拟南芥ACC合成酶基因家族表达调控的研究[A];2007年全国植物生长物质研讨会论文摘要汇编[C];2007年

8 徐海;张玉臻;任双喜;缪有刚;郭晓奎;张怡轩;胡宝瑜;姜卫红;赵国屏;;钩端螺旋体2-甲基苹果酸(Citramalate)合成酶的克隆、表达及功能分析[A];首届中国青年学者微生物遗传学学术研讨会论文摘要集[C];2002年

9 职晓阳;李文均;;放线菌分类系统的更新与修订[A];2008年中国微生物学会学术年会论文摘要集[C];2008年

10 陈志亮;傅英楠;姜蔚宇;陈荣忠;;Ectoine合成酶基因ectC的克隆及其在大肠杆菌中的表达[A];2006中国微生物学会第九次全国会员代表大会暨学术年会论文摘要集[C];2006年

相关博士学位论文 前10条

1 刘艳辉;酶法生产S-腺苷蛋氨酸[D];北京化工大学;2016年

2 陈德宇;前列腺素D合成酶在男性生殖中的基础及应用研究[D];南京师范大学;2005年

3 易弋;盐生杜氏藻EPSP合成酶基因的克隆、功能鉴定及其结构的光谱学性质分析[D];四川大学;2007年

4 蒋伟;玉米海藻糖-6-磷酸合成酶基因家族的功能验证和差异表达分析[D];四川农业大学;2010年

5 胡昌云;3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶AroG的结构与功能的研究[D];复旦大学;2003年

6 李琳玲;银杏叶黄酮积累相关基因克隆及查尔酮合成酶基因启动子功能研究[D];河北农业大学;2010年

7 郑阳霞;枸杞类胡萝卜素合成酶基因(PSY、LycB)的克隆及其转化洋桔梗的研究[D];四川农业大学;2006年

8 喻修道;EβF合成酶基因的克隆及功能分析[D];中国农业科学院;2010年

9 梁成伟;蓝藻与绿藻类胡萝卜素合成酶基因的比较基因组学及代谢调控研究[D];中国科学院研究生院(海洋研究所);2007年

10 陈晓龙;E.coli赖氨酰-tRNA合成酶(LysU):结构与功能研究[D];浙江大学;2011年

相关硕士学位论文 前10条

1 魏新翠;油用牡丹类黄酮合成酶基因的克隆及表达分析[D];西北农林科技大学;2015年

2 张丹;木薯海藻糖合成酶基因MeTPS1-3的克隆与功能分析[D];海南大学;2013年

3 韩莹倩;环二核苷酸合成酶基因丙酸诱导型表达载体的构建及原核表达[D];河南农业大学;2015年

4 孙焱;胡杨BR合成酶基因PeDWF4功能的研究[D];兰州大学;2016年

5 陈吉;苹果酸合成酶Glcb基因克隆及表达特性研究[D];长春工业大学;2016年

6 胡红;乙酰辅酶A合成酶性质分析及其应用[D];长春理工大学;2015年

7 李捷;鞘蕊苏芳樟醇合成酶基因克隆与其花粉活力测定[D];湖北中医药大学;2016年

8 李秀云;毛竹生长过程中纤维素合成酶基因的表达模式和功能分析[D];浙江农林大学;2016年

9 陈鹏飞;白桦纤维素合成酶基因克隆与表达特征分析[D];东北林业大学;2008年

10 张丹凤;蒙古黄芪异黄酮合成酶基因的克隆及序列分析[D];福建农林大学;2004年



本文编号:2171757

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2171757.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8e5b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com