基于微阵列数据的基因调控网络构建方法研究
[Abstract]:Gene regulatory network is a regulatory network formed by the interaction of genes in cells. It is the main mechanism of controlling gene expression in organisms. The construction of gene regulatory networks is one of the important means to understand the nature of life activities. Therefore, the construction of gene regulatory networks using high-throughput experimental data, especially microarray data, has become a hot research topic in the field of system biology. However, most of the existing methods of constructing gene regulation network based on microarray have some problems, such as the direction of regulation can not be determined or the computational complexity is too high. In this paper, a method of constructing gene regulatory network is proposed, which combines the existing correlation test method and ordinary differential equation modeling method. Firstly, the Pearson correlation coefficient between genes is calculated by perturbing experimental data, and then an initial gene regulation network is constructed by Z-score sequencing method. On this basis, the initial control network is optimized by using time series data and ordinary differential equation modeling method. After the ordinary differential equation model is established, the problem of gene network derivation is transformed into a model parameter estimation problem. In this paper, a Tabu search based particle swarm optimization (PSO) algorithm is proposed to estimate the model parameters. In order to reduce the computational complexity, the time series expression spectrum data are first fitted by curve fitting method, and the differential of each time point is estimated. In this way, the parameter estimation problem of differential equations is transformed into a pseudo-multivariate linear regression problem, and the computational time is greatly reduced. Finally, we use the standard test set and the real microarray data to verify the proposed method. The results show that the algorithm proposed in this paper is more sensitive, specific and accurate than the existing methods in the construction of gene regulation network. At the same time, the computational speed of the proposed algorithm is faster than that of the existing methods.
【学位授予单位】:东北师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q811.4
【相似文献】
相关期刊论文 前10条
1 易东,杨梦苏,李辉智,黄明辉,王文昌;相关分析在建立基因调控网络中的应用[J];中国卫生统计;2003年03期
2 张家军;蔡传政;王翼飞;;基因调控网络中的延滞动力学[J];应用科学学报;2007年01期
3 郭子龙;纪兆华;涂华伟;梁艳春;;基因调控网络的研究内容及其数据分析方法[J];电脑知识与技术;2008年15期
4 陈少白;罗嘉;;一类基因调控网络的定性分析[J];南京信息工程大学学报(自然科学版);2010年05期
5 李庆伟;全俊龙;刘欣;;基因调控网络研究进展[J];辽宁师范大学学报(自然科学版);2013年01期
6 叶纬明;吕彬彬;赵琛;狄增如;;少节点基因调控网络的控制[J];物理学报;2013年01期
7 王沛;吕金虎;;基因调控网络的控制:机遇与挑战[J];自动化学报;2013年12期
8 易东,李辉智;基因调控网络研究与数学模型的建立[J];中国现代医学杂志;2003年24期
9 雷耀山,史定华,王翼飞;基因调控网络的生物信息学研究[J];自然杂志;2004年01期
10 姜伟;李霞;郭政;李传星;王丽虹;饶绍奇;;时间延迟基因调控网络重构的决策树方法研究[J];中国科学(C辑:生命科学);2005年06期
相关会议论文 前3条
1 熊江辉;李莹辉;;基因芯片数据分析的新方法与基因调控网络推理[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年
2 王亚丽;周彤;;大规模基因调控网络因果关系的辨识[A];第二十九届中国控制会议论文集[C];2010年
3 冯晶;许勇;李娟娟;;非高斯噪声激励下基因调控网络的研究[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
相关重要报纸文章 前1条
1 吴佳s,
本文编号:2195985
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2195985.html