一个水稻灌浆突变体的遗传分析与基因定位
[Abstract]:Rice is an important food crop in the world and a model plant for plant genome research. Grain filling is an extremely important stage in the process of rice growth and development for the purpose of harvesting grain. It involves complex genetic regulatory networks and environmental interactions, and directly affects the formation of rice yield and quality. The study of mutants and the discovery of new genes controlling rice grain filling rate are of great significance to understand rice grain filling mechanism and refine rice grain filling process; it can also strengthen the cognition of physiological and genetic factors of sugar metabolism pathway in rice grain filling process, better understand the inherent information of grain filling, and promote rice grain filling. In this study, a rice grain extended filling mutant Gefl (grain extended filling 1) was obtained from Yixiang 1B by EMS mutation, and its agronomic characters, physiological and biochemical characteristics, Histocytological observation and related gene expression were investigated. The main results were as follows: 1. The main agronomic traits and rice quality of mutant gef1 and wild type Yixiang 1B were determined. Compared with wild type, the mutant had no significant change in plant height, but shortened panicle length, reduced seed setting rate and reduced grain number per panicle. The grain length, grain width and 1000-grain weight of the mutant increased, but the ratio of length to width did not change significantly, and irregular dark spots appeared on the outer surface of the glume during grain filling. Compared with wild type Yixiang 1B, the average number of large vascular bundles in the same section between the first and second internodes of mutant gef1 decreased, and the difference of the number of large vascular bundles in the corresponding parts between them was 2-7. Compared with the wild type, the inner epidermis of the mutant glume was smooth, the cells were slender and the number of cells increased. The amyloplast of the mutant was spherical and loosely arranged, while the wild type was irregular. The analysis of grain filling rate showed that wild type Yixiang 1B was in rapid filling stage from 0 to 18 days after anthesis, a large number of assimilates were transported to caryopsis, caryopsis trunk and fresh weight continued to increase, while mutant gef1 maintained rapid filling period for 36 days, and its grain filling rate was significantly lower than that of wild type. Dynamics analysis showed that the mutant gef1 developed slowly at the early stage of Caryopsis and took about 12 days longer than the wild type, and the mutant gef1 experienced about 30 days later than the wild type. The content of soluble sugar in wild-type grains began to decrease after 15 days of fertilization, and the content of soluble sugar in mutant grains began to decrease after 25 days of fertilization, and then decreased after 25 days of anthesis. 30 days after flowering, the content of soluble sugar in gef1 grains increased sharply, indicating that the accumulation efficiency of soluble sugar in the grains was significantly higher than that of starch. The results showed that the expression of SUS3 in mutant gef1 was not significantly different from that in wild type. OsSSIIIa was similar to SUS3, and the expression of SUS3 in Gefl remained at a low level at the early filling stage. In addition, the expression of OsAGPL2 and OSAGPS2b in the mutant and wild type at the early filling stage was significantly different, and the expression of OsAGPL2 and OSAGPS2b in the mutant was lower than that in the wild type, and both of them showed a gradual increasing trend. 6. The results of gef1/Yixiang1B, gef1/02428 and gefl/Kitaake hybridization analysis showed that F1 of the three combinations was planted. The results showed that the mutant trait was controlled by recessive genes. The segregation ratios of single plant number of mutant phenotype and single plant number of normal phenotype in the three F_2 populations were all 3:1, indicating that the mutant trait was controlled by a pair of single recessive nuclear genes. 7. The F_2 population of gef1/02428 was selected as the initial population and evenly distributed in 12 rice. The results showed that the markers RM5474, RM7576.A3-7 and A3-8 on the short arm of chromosome 3 were polymorphic and linked to the target gene. Location analysis showed that the gene was located between InDel 3-1 and InDel 3-2 by using the SSR polymorphism markers searched in this region and further designed InDel markers based on the sequences of Japonica rice Nipponqing and Indica rice 9311. The physical distance was about 198Kb. There were 21 open reading frames in this region, and further identification of candidate genes was under way. Middle.
【学位授予单位】:四川农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S511
【相似文献】
相关期刊论文 前10条
1 王伟平;朱飞舟;唐俐;陈立云;武小金;;一种水稻全包穗突变体的发现及初步分析[J];中国农学通报;2008年06期
2 罗洪发;查仁明;杨洪海;田永航;薛建蜂;张鹏;;水稻突变体的创制[J];中国农学通报;2011年27期
3 温明星;陈爱大;曲朝喜;;植物突变体创造及研究现状[J];上海农业科技;2012年06期
4 冯永清;邹维华;李丰成;张晶;张会;谢国生;涂媛苑;路铁刚;彭良才;;特异水稻脆茎突变体生物学特性及生物质降解效率的研究[J];中国农业科技导报;2013年03期
5 张洪征;程治军;万建民;;水稻白化突变体研究进展[J];生物技术通报;2013年11期
6 杨春艳;江玲;沈贝贝;冯志明;王新华;万建民;;水稻品种‘南粳35’辐射诱变突变体的鉴定[J];南京农业大学学报;2012年03期
7 张旭;Theo van de Lee;陆维忠;喻大昭;马鸿翔;;小麦赤霉菌绿色荧光蛋白标记突变体的侵染研究[J];中国农业科学;2008年10期
8 郭建秋;雷全奎;杨小兰;马雯;张向召;;植物突变体库的构建及突变体检测研究进展[J];河南农业科学;2010年06期
9 叶俊;吴建国;杜婧;郑希;张志;石春海;;水稻“9311”突变体筛选和突变体库构建[J];作物学报;2006年10期
10 毛毕刚;刘华清;陈建民;陈在杰;彭永宏;王锋;;两个水稻生殖器官突变体的形态特征和遗传分析[J];分子植物育种;2008年02期
相关会议论文 前10条
1 何俊瑜;朱诚;蒋德安;陈静;孙宗修;;水稻突变体对镉的反应及其对镉的积累、分配特性[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
2 林冬;朱诚;胡国成;孙宗修;;镉胁迫下敏感水稻突变体的抗氧化应答[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
3 张亚芳;潘存红;李爱宏;汤雯;武茹;陈宗祥;许爱霞;潘学彪;;提高水稻插入突变体库利用效率的一点尝试[A];江苏省遗传学会第七届代表大会暨学术研讨会论文摘要汇编[C];2006年
4 刘宝花;彭友良;;一个新的基因控制梨孢菌的菌落生长[A];中国植物病理学会2006年学术年会论文集[C];2006年
5 袁亮;郭威;周丹;陈功友;;水稻条斑病菌突变体库的构建以及部分突变体的鉴别[A];第四届中国植物细菌病害学术研讨会论文集[C];2008年
6 佟星;吴宝美;赵波;叶剑;刘红霞;曾潮武;濮绍京;万平;;小豆突变体库构建及突变体筛选[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
7 石春海;吴建国;周元飞;;水稻“9311”和“日本晴”植株和稻米突变体库的构建[A];全国生物遗传多样性高峰论坛会刊[C];2012年
8 高荣村;胡胜武;郭学兰;董彩华;刘胜毅;;拟南芥抗菌核病突变体的筛选[A];湖北省遗传学会、江西省遗传学会2006年学术年会暨学术讨论会论文摘要集[C];2006年
9 倪永静;胡新;任德超;李巧云;牛吉山;;国麦301突变体库构建初报[A];中国作物学会2013年学术年会论文摘要集[C];2013年
10 朱传凤;吴家和;何朝族;;一个水稻半矮秆突变体的鉴定及其分子功能研究[A];全国植物分子育种研讨会摘要集[C];2009年
相关重要报纸文章 前2条
1 本报记者 刘洋;寻找“美丽的偶然”[N];东方烟草报;2014年
2 科综;水稻“长生不老”可被制约[N];大众科技报;2008年
相关博士学位论文 前10条
1 武磊;拟南芥CKRW1基因和GFC1基因的功能研究[D];兰州大学;2015年
2 郭斐;利用半理性和理性策略对酶活性及手性选择性的设计[D];浙江大学;2015年
3 师晓;水稻雄性不育突变体gsl5的基因克隆及不育机理研究[D];中国农业科学院;2015年
4 刘峰;烟草激活标签突变体库的构建与分析[D];中国农业科学院;2014年
5 奉保华;水稻斑点叶突变体HM47的基因克隆与功能分析[D];中国农业科学院;2015年
6 徐萍;拟南芥突变体edt1根系发育的分子机制及pqt24-1耐百草枯机制研究[D];中国科学技术大学;2012年
7 钱平平;拟南芥甾醇调控气孔发育和开花的研究[D];兰州大学;2013年
8 王晓强;植物根际促生菌Lyc2和XW10的鉴定及抑菌机理研究[D];山东农业大学;2016年
9 谭炎宁;水稻温敏雄性不育突变体T98S和叶色突变体grc2的鉴定、遗传与利用研究[D];湖南农业大学;2015年
10 高翔;拟南芥cat2突变体中叶片偏下性生长机理的研究[D];武汉大学;2013年
相关硕士学位论文 前10条
1 于洋;水稻护颖外稃化突变体lemma-like sterile lemma(lsl)的遗传分析与基因定位[D];西南大学;2015年
2 王丹霞;水稻yl1黄叶突变体的基因克隆与功能分析[D];中国农业科学院;2015年
3 张龙弟;水稻中一个叶尖枯突变体的图位克隆及LTN2基因的功能分析[D];中国农业科学院;2015年
4 董青;两个水稻黄绿叶基因的图位克隆[D];中国农业科学院;2015年
5 查象敏;玉米抗虫相关突变体的筛选及基因的初步定位[D];中国农业科学院;2015年
6 杜依聪;玉米表皮蜡质突变体glossy6的表型分析与基因克隆[D];中国农业科学院;2015年
7 梅家松;一个水稻黄绿叶突变体的鉴定与基因克隆[D];中国农业科学院;2015年
8 焦禹顺;烟草香气突变体鉴定及挥发性香气成分分析[D];中国农业科学院;2015年
9 熊剑锐;中国兰春剑隆昌素叶色突变体生理生化和光合特性研究[D];西南交通大学;2015年
10 程孝;水稻稃片白化突变体Ds插入位点与标记基因的分子鉴定[D];苏州大学;2015年
,本文编号:2198926
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2198926.html