基于互信息基因调控网络构建及其在甲状腺肿瘤基因分析中应用的研究
[Abstract]:With the rapid development of life science and computer science, life science and computer science combine to form a new subject, bioinformatics. Bioinformatics analyzes and explains biological secrets by studying the collection, processing, storage and dissemination of biological information. However, it is necessary to study the interaction and mechanism of all components (gene mRNAs, proteins, etc.) in biological information systems from a systematic perspective. The interaction or causality between genes in the processes of heredity, development, evolution and disease can be summarized as gene regulation, which is an important subject in bioinformatics. The study of gene regulation network can help us to understand and understand the causal relationship between gene development and gene regulation process, and can help us to further study biological function and behavior. In this study, we found that the study of the regulatory network of diseased and non-diseased genes can help us to find the genes closely related to disease and the level of gene expression, and thus to find the cause of the disease at the gene level. Through analysis, we try to treat the gene by medicine or physical method, and achieve the effect of treating disease. However, the idea of constructing regulatory networks based on gene expression data is not of great biological significance. Therefore, this paper studies the inclusion of RNA-Seq data and reasonable biological information into the process of network construction based on mutual information. Through the rational use of a wide range of data to make the constructed network has stronger biological significance, and in the process of disease gene differential screening, not only the use of simple genetic differential screening algorithm for differential screening, Genetic diversity screening was carried out by introducing Bootstrap self-help method. Finally, this idea is applied to thyroid tumor data to explore more meaningful and accurate information, which can provide scientific advice for prediction and treatment of thyroid diseases. The research process of this paper is as follows: (1) data acquisition. The RNA-Seq data and miRNA data of thyroid tumor were obtained from TCGA platform and processed. (2) screening the difference gene between normal and diseased RNA-Seq data. To find the target gene of miRNA. (3) to construct the BC3NET gene regulatory network based on mutual information, and divide the gene regulation network into modules. (4) verify and analyze the subnet module. The conclusion is constructive to predict and treat thyroid diseases. (5) A set of feasible methods or ideas from constructing gene regulatory network to predicting and treating thyroid diseases are formed. In the future work, we can also add methylation data to gene Card data to make our gene regulatory network more valuable. By adding more biological information, we can provide constructive advice and basis for prevention and treatment of disease at molecular level.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R736.1
【参考文献】
相关期刊论文 前8条
1 熊莉丽;张宝;郭志云;;MicroRNA与转录因子调控网络综述[J];重庆大学学报;2014年06期
2 徐颜美;王立;李静;黄波;刘静;陈鑫;陈希敏;林晋;黄林凤;王小中;;平均血小板体积相关基因的富集分析[J];临床检验杂志;2014年02期
3 阳小进;杨俊涛;谭光华;王晓旭;谭文甫;;骨肉瘤相关基因富集分析[J];现代医药卫生;2013年06期
4 赵屹;谷瑞升;杜生明;;生物信息学研究现状及发展趋势[J];医学信息学杂志;2012年05期
5 李玉莲;申杰;;甲状腺癌分子生物学的研究进展[J];中华肿瘤防治杂志;2011年23期
6 郑鹏生;冀静;;mTOR信号通路与肿瘤的研究进展[J];西安交通大学学报(医学版);2010年01期
7 张学良;王华;;甲状腺癌肿瘤标志物及相关基因研究进展[J];交通医学;2008年02期
8 蒋定锋;潘娟娟;赵耐青;;差异表达基因筛选方法的比较[J];中国卫生统计;2006年05期
相关博士学位论文 前6条
1 贺梦子;基于生物信息学的甲状腺癌生物标志物的筛选及验证[D];吉林大学;2015年
2 苏乃芳;转录因子和microRNA组成的基因调控网络的生物信息学分析[D];北京大学;2013年
3 吴佳楠;基因表达数据分析方法及其应用研究[D];吉林大学;2013年
4 张秀军;基于互信息的基因调控网络构建方法研究[D];上海大学;2013年
5 王立坤;RNA-seq数据的处理与应用[D];吉林大学;2012年
6 王靖;基于GO的基因功能及疾病相关通路分析[D];电子科技大学;2012年
相关硕士学位论文 前4条
1 吴帅;基因富集分析方法研究及基因与疾病关联性分析[D];哈尔滨工业大学;2016年
2 王英;基于方差和中值调整的RNA-Seq数据标准化方法及其评估[D];厦门大学;2014年
3 丰伟;基于贝叶斯网络的基因调控网络的构建[D];吉林大学;2008年
4 杨庆平;基于贝叶斯网络的基因调控网络构建算法的研究[D];哈尔滨工业大学;2006年
,本文编号:2238730
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2238730.html