植物高通量基因型和表型数据计算分析及工具开发
[Abstract]:Group studies include genomics, proteomics, transcriptome, epigenomics, and metabolism. The entire phenotype analysis method assisted crop breeding, forming a new group learning method-Phenotypic group study (including high-throughput analysis of the biophysical and biochemical characteristics of the tissue). Genomics and phenotypic groups are two important branches of the study, which are at the ends of multiple groups of studies. One central goal of biology today is to establish a complete functional connection between the genome and the phenotypic group, which we call genotype phenotypes. Cell systems are products involved in the expression of genes involved in the transcription regulation of tens of thousands of genes. Therefore, it is necessary to clarify the mechanism of transcriptional regulation network, not only to solve the mechanism of cell work but also to find new targets for biological molecules. In genomics research, it is challenging to predict gene regulation networks from expression data. At present, many methods have been developed (from supervisory learning to non-supervised learning) to address this challenge. wherein the most promising is a support vector machine-based method (SVM). We need to compare their predicted accuracy with a comprehensive analysis using different core-based supervised learning SVM methods under different biological experimental conditions and network sizes. Therefore, based on SVM, we developed a method called CompareSVM to compare the reasoning methods of different gene regulation networks. Through the CompareSVM, we use different SVM kernel methods to simulate different size gene chips and second-generation sequencing data sets. The results of the feedback from the CompareSVM show that the accuracy of the reasoning method depends on the experimental conditions and the nature of the network size. The limitations of plant phenotype studies have limited our analysis of quantitative shape inheritance, especially those related to yield and stress resistance (e.g., increased yield potential, improved early resistance, heat resistance, and nutrient efficiency, etc.). Nowadays, the development of effective high-throughput phenotype analysis platform is still in bottleneck period. Progress in biology, sensors, and high-performance computing, however, is paving the way for this. High-throughput phenotype analysis is an important technique to analyze the phenotypic components of plants. In order to quantify plant growth and phenotypic traits, effective image processing performance and feature extraction are essential in the analysis. Therefore, for a variety of different plant species, based on the real-time collection of different ranges of image data, it is necessary to develop a system that supports transmission of images from different acquisition environments and can perform image analysis on a large scale. At present, a high-throughput typing platform that captures widespread and in-depth phenotypic data of plants has been developed, which advances our insights into plant growth and plant response climate and environmental changes. Based on these developments, more and more efficient crop genetic improvements meet the needs of future generations. In plant phenotypic analysis, digital image analysis of parametric evaluation of plant phenotypes in a non-destructive manner is a very important task. some screening systems based on different requirements for picture analysis are now developed and partly commercially available. In the study of phenotypic groups, the segmentation and identification of plant organs, especially the independent leaves, is one of the greatest difficulties based on the phenotypic analysis of picture plants. The full-automatic phenotypic analysis system can collect plant pictures continuously, but also brings problems such as high labor force, high cost and high maintenance cost. So we need a more flexible system to adapt to different plant backgrounds, plant lighting, and similar changes. As a result, we have developed an ImageJ plug-in-HTPPA that can be acquired free of charge by expanding the art photo processing algorithm library of imageJ, and a number of utilities that can be developed simultaneously with the HTPPA to explore a high-throughput phenotype analysis. By improving the segmentation of plants and individual leaves using plant structures and morphological features, we can advance large-range high-throughput phenotype analysis and establish linkages between genotypes and phenotypes. Genomics and Phenotypic group studies are two of the most important basic branches of science and technology, and are two endpoints of multi-group learning. Advances in science and technology have increased the breadth of available sets of learning data, from full-gene sequencing data to a wide range of transcription groups, methylation groups, and metabolic group data. The key objective is to establish a comprehensive functional connection between the genotype and phenotype by defining an effective model for predicting phenotypic traits and results. Genetic and phenotypic data from high flux and high dimensions can be processed using the whole genome association analysis (GWAS) method, and a gray area exists from which the genotype and phenotype can be found. The application of GWAS and its similar methods and the integration of multiple sets of learning data began to find the contribution of genotypic variations to phenotypic diversity. It is of vital importance to integrate a wide range of group learning data through the use of a system biology approach, which can further bridge genomics and phenotypic groups and ultimately make the phenotype accurate based on the contribution of the genotype
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q943.2;Q811.4
【相似文献】
相关期刊论文 前10条
1 金碧辉;;基因组学 数据聚焦分析[J];科学观察;2006年02期
2 ;2013国际基因组学大会将在青岛召开[J];遗传;2013年05期
3 于军;;基因组学的未来[J];科学世界;2013年08期
4 葛颂 ,本刊编辑部;基因组学和生命的进化[J];科学中国人;2004年05期
5 李伟,印莉萍;基因组学相关概念及其研究进展[J];生物学通报;2000年11期
6 易家康;人类以外的基因组[J];世界科学;2000年10期
7 杨焕明;;基因组学 中国科学家谈科学[J];科学观察;2006年02期
8 杨立英;;基因组学领域演进的科学计量研究[J];科学观察;2007年01期
9 张辉;孙坤;丁兰;梁前进;;关于开设“基因组学”课程的探讨[J];生物学通报;2008年08期
10 ;2009年国际基因组学大会将在北京召开[J];遗传;2009年06期
相关会议论文 前10条
1 赵一;;基因组学时代的中药研究[A];2004年中国西部药学论坛论文汇编(上册)[C];2004年
2 贺林;;基因组学对我们概念的冲击和带来的思考[A];中国遗传学会功能基因组学研讨会论文集[C];2006年
3 刁现民;;后基因组时代的生命科学及现代农业质疑[A];新观点新学说学术沙龙文集2:生命科学的思考与畅想[C];2006年
4 何晨阳;;基因组学新技术在植物保护和病虫害研究中的应用[A];科技创新与绿色植保——中国植物保护学会2006学术年会论文集[C];2006年
5 ;医学基因组学国家重点实验室[A];培育生物产业,,发展绿色经济——第五届中国生物产业大会·2011基因科学与产业发展论坛会刊[C];2011年
6 杨焕明;;基因组学与21世纪的医学[A];第十二次全国医学遗传学学术会议论文汇编[C];2014年
7 彭瑞骢;;新世纪医学发展值得关注的两个问题[A];中国自然辩证法研究会第五届全国代表大会文件[C];2001年
8 魏尔清;;后基因组时代药理学研究趋向[A];第七次全国莨菪类药研究学术交流会论文汇编[C];2001年
9 赵国屏;;基因组学与社会经济的和谐发展[A];培育生物产业,发展绿色经济——第五届中国生物产业大会·2011基因科学与产业发展论坛会刊[C];2011年
10 吕占军;王秀芳;谢英;段肖翠;;医学基因组学教学中创新和实践能力的培养[A];高等院校遗传学教学改革探索[C];2010年
相关重要报纸文章 前10条
1 记者 贾少强 通讯员 王静思;国际基因组学 大会在深召开[N];深圳商报;2010年
2 编译 李勇;癌症基因组学的未来[N];医药经济报;2014年
3 记者 毕国学 通讯员 时红伟 雷云;深圳全基因组设计育种研究领先全国[N];深圳商报;2014年
4 ;疾病基因组学将成“主旋律”[N];中国医药报;2002年
5 中科院院士、中科院北京基因研究所研究员 杨焕明;基因组学的突破[N];人民政协报;2008年
6 记者 刘传书;中国首次提出“人类泛基因组”概念[N];科技日报;2009年
7 记者 李嫦娟 通讯员 蒋婷燕;第四届国际基因组学大会在深召开[N];广东科技报;2009年
8 记者 易运文;我青年学者首次提出“人类泛基因组”概念[N];光明日报;2009年
9 特约记者 铁铮;毛白杨基因组序列图谱绘就[N];中国花卉报;2011年
10 记者 过国忠 通讯员 生永明;作物基因组学与育种研讨会在扬州大学召开[N];科技日报;2012年
相关博士学位论文 前5条
1 王一;群体基因组学若干模型与算法[D];复旦大学;2010年
2 白义春;CRISPR/Cas9技术在鸡、猪基因组编辑研究中的应用及一种新型基因无缝编辑技术的开发研究[D];西北农林科技大学;2016年
3 Zeeshan Gillani;植物高通量基因型和表型数据计算分析及工具开发[D];浙江大学;2016年
4 谢婷;甘蓝型油菜3D基因组学的初步研究与应用[D];华中农业大学;2016年
5 赵永兵;泛基因组学分析方法开发及应用[D];中国科学院北京基因组研究所;2014年
相关硕士学位论文 前10条
1 黄震震;基于整合的TCGA数据库探索基因组学与临床数据关系[D];浙江大学;2016年
2 龙志成;基于基因组重测序技术研究莲两生态型的适应性遗传分化[D];中国科学院研究生院(武汉植物园);2016年
3 樊军鹏;油菜磷高效性状的全基因组关联分析[D];华中农业大学;2016年
4 王蒙召;基因组重测序基础上的早实枳与普通枳部分差异基因比较分析[D];华中农业大学;2016年
5 汪金兔;鲤第四轮全基因组复制时间及鲤CC型趋化因子的研究[D];上海海洋大学;2012年
6 霍永霞;群体基因组学方法探讨人类与中国观赏鸡骨骼系统进化遗传机制[D];安徽大学;2015年
7 孙秋实;基于串联质谱数据的蛋白质—基因组学方法研究[D];北京交通大学;2015年
8 谭珍连;用基因组改组技术提高白地霉的内酯化脂肪酶活性的研究[D];广西大学;2007年
9 项迎霞;空间飞行诱发水稻基因组不稳定序列特征分析[D];大连海事大学;2010年
10 张清;运动单胞菌基因组尺度代谢网络模拟[D];天津大学;2010年
本文编号:2263615
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2263615.html