基于RNA-Seq技术分析在金属矿上部生长的芒萁的差异表达基因
[Abstract]:Osmunda dichotoma (Dicranopteris pedata (Houtt.) Nakaike) grown in the upper part of Dachang tin polymetallic ore deposit (heavy metal stress area) and the outer area (control area) not affected by mineralization or pollution were used as experimental materials. The unigenes was assembled by NCBI official non-redundant protein sequence database (Nr), NCBI official nonredundant nucleotide sequence database (Nt), KEGG homologous database (KO), Swiss-Prot database (Swiss-Prot) and protein family database (Pfam), gene functional classification system database. (GO) and Eukaryotic homologous sequence database (KOG) were annotated. Expression of unigenes. in leaves of Osmunda japonicus under heavy metal stress and control The results showed that 19.56 Gb clean data, were obtained by sequencing. The leaves of Osmunda japonica were 10.14 Gb clean data. and 9.42 Gb clean data. in heavy metal stress region and control area, respectively. Of the 250582 unigenes assembled, 120,097 unigenes were annotated, accounting for 47.93% of the total unigenes. There were 208,620 unigenes upregulation and down-regulation in the leaves of Osmunda japonicus under heavy metal stress, and 120 of them up-regulated the differential expression of unigenes as a metabolic process. 57.69and 285 down-regulated differentially expressed unigenes were noted as catalytic activity, and 45.97% of all down-regulated differentially expressed unigenes. 15 unigenes were related to heavy metal transport and tolerance in the leaves of Osmunda japonicus under heavy metal stress. The relative expression of c44988_g1 and c84121_g1 were significantly higher than those of the control. The results show that the genes that respond to natural metal mineralization or mine heavy metal pollution can be used for biogeochemical prospecting and soil heavy metal contamination detection.
【作者单位】: 广西大学农学院;广东工业大学计算机学院;桂林理工大学广西隐伏金属矿产勘查重点实验室;桂林理工大学地球科学学院;
【基金】:国家自然科学基金资助项目(41363003;40972220)
【分类号】:Q943.2
【参考文献】
相关期刊论文 前7条
1 陈杨;蒙梦平;宋慈安;;植物对土壤中微量元素的吸收与转移及对生物地球化学异常形成的影响——以广西盐田岭锡石硫化物矿床为例[J];地球与环境;2012年02期
2 杨胜香;田启建;梁士楚;周耀渝;邹慧成;;湘西花垣矿区主要植物种类及优势植物重金属蓄积特征[J];环境科学;2012年06期
3 刘足根;杨国华;杨帆;刘雷;方红亚;黄精明;;赣南钨矿区土壤重金属含量与植物富集特征[J];生态学杂志;2008年08期
4 徐金鸿;徐瑞松;夏斌;;广东鼎湖山斑岩钼矿区生物地球化学特征[J];地球与环境;2006年01期
5 陈代演,邹振西,任大银;植物找矿法在寻找铊矿床中的初步应用[J];矿物岩石地球化学通报;2000年04期
6 马跃良;广东省河台金矿生物地球化学特征及遥感找矿意义[J];矿物学报;2000年01期
7 季峻峰,崔卫东,孙承辕;湖南黄金洞金矿床植物地球化学勘查的初步研究[J];物探与化探;1992年06期
【共引文献】
相关期刊论文 前10条
1 邹承武;宋玮;宋慈安;雷良奇;;基于RNA-Seq技术分析在金属矿上部生长的芒萁的差异表达基因[J];植物资源与环境学报;2017年02期
2 李凤梅;杨胜香;曹建兵;彭清静;符待君;龙华来;;湘西典型锰渣库主要优势植物种类及重金属耐性特征[J];重庆师范大学学报(自然科学版);2017年04期
3 张静;蔡静如;许建新;刘文竹;沈彦会;钱瑭璜;刘建华;;蕨类植物在生态修复中的应用研究进展[J];安徽农业科学;2017年04期
4 赵玉红;拉巴曲吉;罗布;王向涛;杨路存;方江平;;铜、镉、铅、锌对4种豆科植物种子萌发的影响[J];种子;2017年01期
5 刘诗敏;高良敏;邱增羽;黄肖萌;杨茗;雒建伟;;淮南部分采煤沉陷复垦区土地中植物重金属的富集特征比较研究[J];山东工业技术;2017年02期
6 刘敏;武化民;李秀峰;谢慧敏;陈会明;;土壤重金属污染植物修复的发展现状[J];资源节约与环保;2016年11期
7 王小玲;刘腾云;幸学俊;李茜;高柱;;硅对Cd、Pb、Cu、Zn正交胁迫下水稻丙二醛含量的影响[J];湖北农业科学;2016年22期
8 张然然;罗鹏林;刘远河;康薇;;大冶铜绿山矿区优势草本植物重金属富集能力测定[J];化学与生物工程;2016年11期
9 田桃;曾敏;周航;徐s,
本文编号:2293156
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2293156.html