瓦斯在煤体中的非线性渗透模型及求解
本文选题:煤 切入点:渗透系数 出处:《中国矿业》2017年01期 论文类型:期刊论文
【摘要】:考虑到外力引起的孔隙结构改变,将导致煤体渗透性发生显著变化,利用原煤试件的三轴渗透实验数据建立反应瓦斯非线性渗流规律的数学模型,采用基于改进遗传算法赋初值的拟牛顿法求解建立的模型,对瓦斯在原煤试件中的非线性渗流规律进行了求解和分析。结果表明,改进的遗传算法大幅提高了初值寻找的速度和精度,为利用拟牛顿法进行模型最终求解提供保障,从而使得新型优化算法可以有效解决非线性最小二乘问题。采用该方法研究煤体的非线性渗流规律发现,在一定压力范围内,煤体的渗透系数随孔隙压力增加而增加,随体积应力的增加而减小,渗透系数是孔隙压力的二次函数与体积应力的负指数函数的乘积。
[Abstract]:Considering the change of pore structure caused by external force, the permeability of coal body will be changed significantly. The mathematical model of nonlinear seepage law of gas reaction is established by using the experimental data of triaxial permeability of raw coal sample. The nonlinear seepage law of gas in raw coal samples is solved and analyzed by using quasi-Newton method based on the initial value of improved genetic algorithm. The results show that, The improved genetic algorithm greatly improves the speed and accuracy of initial value searching, which provides a guarantee for the final solution of the model by using the quasi-Newton method. Therefore, the new optimization algorithm can effectively solve the nonlinear least square problem. By using this method, it is found that in a certain pressure range, the permeability coefficient of coal increases with the increase of pore pressure. The permeability coefficient is the product of the quadratic function of pore pressure and the negative exponential function of volume stress.
【作者单位】: 东北大学资源与土木工程学院;辽宁工程技术大学基础教学部;辽宁工程技术大学研究生学院;
【基金】:国家自然科学基金项目资助(编号:50974030) 博士后科学基金项目资助(编号:20110491512)
【分类号】:TD712
【相似文献】
相关期刊论文 前10条
1 刘坤,刘伟波,吴忠强;基于模糊遗传算法的电液位置伺服系统控制[J];黑龙江科技学院学报;2005年04期
2 李华昌,谢淑兰,易忠胜;遗传算法的原理与应用[J];矿冶;2005年01期
3 冯锦春;杨林建;;遗传算法在机械工程方面的应用研究[J];煤矿机械;2008年08期
4 李凯;田双亮;耿丽君;张喜;;基于改进遗传算法在分析企业客户群中的应用[J];河南理工大学学报(自然科学版);2009年06期
5 刘铁男,姜建国,陈继刚,张长江,于镝;遗传算法的收敛性分析[J];大庆石油学院学报;2000年03期
6 乐慧丰,林家骏,俞金寿;投影遗传算法[J];华东理工大学学报;2000年05期
7 苑进,孙忠林,刘雪美;改进遗传算法在齿轮减速器优化中的应用[J];山东科技大学学报(自然科学版);2001年04期
8 李春利,郭章红,杨振生;基于遗传算法的分子设计初探[J];化学工业与工程;2002年01期
9 董军芳,曾颖,林金清;应用遗传算法推算多元溶液热力学数据[J];吉首大学学报(自然科学版);2002年01期
10 唐雪萍,何绪全;遗传算法在流体识别中的应用[J];天然气勘探与开发;2002年01期
相关会议论文 前10条
1 陈家照;廖海涛;张中位;罗寅生;;一种改进的遗传算法及其在路径规划中的应用[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
2 李国云;刘颖;薛梅;邬志敏;;遗传算法在高温空冷冷凝器优化设计中的应用[A];第五届全国制冷空调新技术研讨会论文集[C];2008年
3 王志军;李守春;张爽;;改进的遗传算法在反演问题中的应用[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
4 任燕翔;姜立;刘连民;从滋庆;;改进遗传算法在三维日照方案优化中的应用[A];工程三维模型与虚拟现实表现——第二届工程建设计算机应用创新论坛论文集[C];2009年
5 韩娟;;遗传算法概述[A];第三届河南省汽车工程科技学术研讨会论文集[C];2006年
6 庞国仲;王元西;;基于遗传算法控制步长的定性仿真方法[A];'2000系统仿真技术及其应用学术交流会论文集[C];2000年
7 张忠华;杨淑莹;;基于遗传算法的聚类设计[A];全国第二届信号处理与应用学术会议专刊[C];2008年
8 何翠红;区益善;;遗传算法及其在计算机编程中的应用[A];1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(下册)[C];1995年
9 靳开岩;张乃尧;;几种实用遗传算法及其比较[A];1996年中国智能自动化学术会议论文集(下册)[C];1996年
10 王宏刚;曾建潮;李志宏;;摄动遗传算法[A];1996年中国智能自动化学术会议论文集(下册)[C];1996年
相关重要报纸文章 前1条
1 林京;《神经网络和遗传算法在水科学领域的应用》将面市[N];中国水利报;2002年
相关博士学位论文 前10条
1 蔡美菊;交互式遗传算法及其在隐性目标决策问题中的应用研究[D];合肥工业大学;2015年
2 张士伟;三维声学快速多极基本解法在机械噪声预测中的应用研究[D];沈阳工业大学;2016年
3 高军;无铅焊料本构模型及其参数识别方法研究[D];南京航空航天大学;2015年
4 Amjad Mahmood;半监督进化集成及其在网络视频分类中的应用[D];西南交通大学;2015年
5 周辉仁;递阶遗传算法理论及其应用研究[D];天津大学;2008年
6 郝国生;交互式遗传算法中用户的认知规律及其应用[D];中国矿业大学;2009年
7 侯格贤;遗传算法及其在跟踪系统中的应用研究[D];西安电子科技大学;1998年
8 马国田;遗传算法及其在电磁工程中的应用[D];西安电子科技大学;1998年
9 唐文艳;结构优化中的遗传算法研究和应用[D];大连理工大学;2002年
10 周激流;遗传算法理论及其在水问题中应用的研究[D];四川大学;2000年
相关硕士学位论文 前10条
1 张英俐;基于遗传算法的作曲系统研究[D];山东师范大学;2006年
2 钟海萍;原对偶遗传算法与蚁群算法的一种融合算法[D];暨南大学;2013年
3 李志添;模糊遗传算法与资源优化配置的预测控制[D];华南理工大学;2015年
4 王琳琳;新型双层液压轿运车车厢的设计研究[D];上海工程技术大学;2015年
5 李海全;基于遗传算法的建筑体形系数及迎风面积比优化方法研究[D];华南理工大学;2015年
6 彭骞;基于遗传算法的山区高等级公路纵断面智能优化方法研究[D];昆明理工大学;2015年
7 周玉林;基于小波分析和遗传算法的配电网故障检测[D];昆明理工大学;2015年
8 郭颂;基于粗糙集和遗传算法的数字管道生产管理系统研究[D];昆明理工大学;2015年
9 吴南;数值逼近遗传算法的研究应用[D];华南理工大学;2015年
10 于光帅;一类优化算法的改进研究与应用[D];渤海大学;2015年
,本文编号:1561487
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1561487.html