双分散颗粒体系在临界堵塞态的结构特征
本文关键词:双分散颗粒体系在临界堵塞态的结构特征 出处:《物理学报》2016年02期 论文类型:期刊论文
【摘要】:堵塞行为是颗粒体系中一种常见的现象,其力学性质与堆积结构的关联非常复杂.本文采用离散元法研究了由两种不同半径颗粒组成的二维双分散无摩擦球形颗粒体系在临界堵塞态所呈现的结构特征,讨论了大小颗粒粒径比与大颗粒百分比对临界堵塞态的影响.数值模拟结果表明,当粒径比小于1.4时,临界平均接触数与大颗粒百分比关系不大,当粒径比大于1.4时随着大颗粒百分比的增大临界平均接触数先减小再增大.而临界体积分数在粒径比小于1.8时随着大颗粒百分比的增加先减小后增大,大于1.8时又基本不随大颗粒百分比而变化.大颗粒百分比在接近0或1时,系统近似为单分散体系,临界平均接触数与体积分数基本不随半径比的增大而变化;在接近0.5时,临界平均接触数随着半径比的增大逐渐减小,而临界体积分数则是先减小后增大.文中对大-小颗粒这一接触类型的百分比也进行了探讨,其值随着大颗粒百分比的增大呈二次函数的变化趋势,粒径比对这一变化趋势只有较小的影响.
【作者单位】: 贵州大学物理系;
【基金】:国家自然科学基金(批准号:11264006) 贵州大学引进人才科研基金(批准号:201334)资助的课题~~
【分类号】:O347.7
【正文快照】: 1引言在颗粒体系中,体积分数是反映堆积状态的重要物理量,当颗粒的体积分数足够小时,颗粒堆表现为疏松态;随着体积分数的逐渐增大,体系可以承受一定的应力,表现为堵塞态[1,2];从疏松态到堵塞态的临界转变点处称为临界堵塞态.1998年,Liu和Nagel首次提出用相图来描述不同系统的
【相似文献】
中国期刊全文数据库 前10条
1 赵永志;张宪旗;刘延雷;郑津洋;;滚筒内非等粒径二元颗粒体系增混机理研究[J];物理学报;2009年12期
2 高红利;赵永志;刘格思;陈友川;郑津洋;;阻尼对水平滚筒内二元颗粒体系径向分离模式形成的影响[J];物理学报;2011年07期
3 高红利;陈友川;赵永志;郑津洋;;薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究[J];物理学报;2011年12期
4 张国华;孙其诚;黄芳芳;金峰;;摩擦颗粒体系各向同性压缩过程中的堵塞行为[J];物理学报;2011年12期
5 黄德财;冯耀东;解为梅;陆明;吴海平;胡凤兰;邓开明;;颗粒密度对旋转筒内二元颗粒体系分离的影响[J];物理学报;2012年12期
6 孙其诚;金峰;王光谦;;封面图片说明[J];力学与实践;2010年01期
7 孙其诚;金峰;王光谦;张国华;;二维颗粒体系单轴压缩形成的力链结构[J];物理学报;2010年01期
8 张祺;李寅阊;刘锐;蒋亦民;厚美瑛;;直剪颗粒体系声波探测[J];物理学报;2012年23期
9 冯旭;张国华;孙其诚;;颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响[J];物理学报;2013年18期
10 赵永志;程易;;水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J];物理学报;2008年01期
中国重要会议论文全文数据库 前9条
1 陈凡秀;张慧新;孔亮;;颗粒体系变形与力链的试验研究[A];中国力学大会——2013论文摘要集[C];2013年
2 辛海丽;孙其诚;刘建国;金峰;;刚性块体压入颗粒体系时的受力及力链演变[A];中国力学学会学术大会'2009论文摘要集[C];2009年
3 刘锐;;振动流化颗粒体系的类毛细现象[A];第七届全国液体和软物质物理学术会议程序册及论文摘要集[C];2010年
4 张兴;隆正文;胡林;;颗粒体系中力分布的标量力网系综模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
5 姜泽辉;韩红;;器壁摩擦力对受振颗粒体系中倍周期分岔过程的影响[A];第七届全国液体和软物质物理学术会议程序册及论文摘要集[C];2010年
6 张兴刚;胡林;;静态颗粒体系力分布的系综理论[A];第七届全国液体和软物质物理学术会议程序册及论文摘要集[C];2010年
7 陈友川;赵永志;崔泽群;郑津洋;;基于超二次曲面的非球形离散单元模型研究[A];颗粒材料计算力学研究进展[C];2012年
8 陈友川;赵永志;郑津洋;;沙粒流团聚现象的计算颗粒力学模拟研究[A];中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会论文集[C];2010年
9 陈友川;赵永志;高红利;郑津洋;;异径球形颗粒间的液桥力数学模型[A];中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会论文集[C];2010年
中国硕士学位论文全文数据库 前3条
1 任杰骥;颗粒体系电阻值对压应力的响应特性研究[D];哈尔滨工业大学;2015年
2 陈友川;基于超二次曲面的离散单元接触模型研究[D];浙江大学;2012年
3 张慧新;钢珠颗粒体系受集中力时的力链研究[D];青岛理工大学;2014年
,本文编号:1316513
本文链接:https://www.wllwen.com/kejilunwen/lxlw/1316513.html