单液滴内空化气泡的生长及溃灭研究
[Abstract]:Supercavitation fuel jet causes cavitation bubbles in some fuel droplets in the spray, and the growth and collapse of cavitation bubbles have an important effect on the splitting and atomization of droplets. The growth and collapse process of cavitation bubbles in fuel droplets under supercavitation conditions were first simulated based on VOF method. It is found that the growth process of cavitation bubbles in a single droplet can be divided into three stages according to the control mechanism: surface tension control stage, integrated competition stage and inertial force control stage. In the first stage, the growth of cavitation is mainly controlled by the surface tension, and the effect of inertia force on the growth of cavitation and the inhibition of viscous force on the growth of cavitation can be neglected. At the stage of II, the growth of cavitation is affected by surface tension, inertia force and viscosity force. The growth rate of cavitation is a kind of inertia force to promote the growth of cavitation and the surface tension and viscosity force to restrain the growth of cavitation. The result of the joint action; In the III stage, the growth of cavitation is mainly controlled by inertial force, and the effects of surface tension and viscosity force on the growth of cavitation can be neglected. The collapse process of cavitation bubbles in a single droplet consists of several collapsing stages and a rebound stage, which is similar to the vibration process of a damped spring oscillator. According to the changing course of bubble radius with time at the end of each collapse cycle, the bubble collapse can be divided into three stages: fast collapse period, slow collapse period and stable phase. The change of cavitation collapse pressure in the initial stage of collapse is very sharp, but the change of cavitation collapse volume is much more gentle, and the change of cavitation rebound pressure with time corresponds to the change of cavitation rebound volume with time.
【作者单位】: 北京交通大学机械与电子控制工程学院;
【基金】:国家自然科学基金(5127601) 国家高技术研究发展计划(2013AA065303) 北京市自然科学基金(3132016) 中国博士后科学基金(2016MS9106) 中央高校基本科研业务费专项资金(2016JBM049)资助项目
【分类号】:O35
【相似文献】
相关期刊论文 前10条
1 管金发;邓松圣;张攀锋;华卫星;;空化特性研究进展[J];科学技术与工程;2011年27期
2 叶曦;姚熊亮;张阿漫;庞福振;;可压缩涡流场中空泡运动规律及声辐射特性研究[J];物理学报;2013年11期
3 倪汉根,黄建波;空泡在非均匀流场中的运动特性[J];力学学报;1986年03期
4 叶取源;锥头物体垂直入水空泡的发展和闭合[J];水动力学研究与进展;1989年02期
5 黄景泉;空泡起始和溃灭阶段的噪声[J];应用数学和力学;1990年08期
6 邱超;张会臣;连峰;;空泡动力学特性的研究进展[J];润滑与密封;2013年12期
7 李小磊;秦长剑;张会臣;;激光空泡在文丘里管中运动的动力学特性[J];物理学报;2014年05期
8 张凤华,廖振方,唐川林;空泡运动非线性动力学特性的数值研究[J];重庆大学学报(自然科学版);2001年04期
9 张效慈;;片空泡崩溃的冲击力[J];船舶力学;2012年07期
10 叶取源;;用E-L方法计算圆平头物体垂直入水空泡的面闭合和深闭合[J];应用力学学报;1990年04期
相关博士学位论文 前2条
1 刘秀梅;液体参量对激光空泡产生和溃灭的影响研究[D];南京理工大学;2009年
2 韩冰;激光空泡相互作用及非对称溃灭的力学特性研究[D];南京理工大学;2013年
相关硕士学位论文 前2条
1 邱超;微流体中空泡的产生及其动力学特性研究[D];大连海事大学;2012年
2 朱巧凤;界面张力及粘性对单模Rayleigh-Taylor不稳定性空泡增长率的影响[D];湘潭大学;2015年
,本文编号:2385060
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2385060.html