FPM改进算法及在应力波传播问题中的应用
发布时间:2019-03-09 13:43
【摘要】:有限粒子法(FPM)是传统SPH方法的重要发展,大大提高了边界区域粒子的计算精度。然而在迭代计算过程中,高耗时和潜在的数值不稳定性是制约FPM应用的关键因素。通过对FPM基本方程进行矩阵分解,建立了一种特殊格式的FPM改进算法。该方法保持FPM方法在边界区域较高计算精度的同时,成功地规避了传统FPM方法对系数矩阵可逆性的限制,大大提高了计算效率。最后,将改进算法在一维应力波传播问题中予以实现,获得了较好的数值结果。
[Abstract]:Finite particle method (FPM) is an important development of traditional SPH method, which greatly improves the accuracy of particle calculation in the boundary region. However, high time-consuming and potential numerical instability are the key factors restricting the application of FPM. Based on the matrix decomposition of FPM's basic equation, an improved FPM algorithm with special scheme is established. This method preserves the high computational accuracy of the FPM method in the boundary region, and avoids the limitation of the reversibility of the coefficient matrix by the traditional FPM method successfully, and greatly improves the computational efficiency. Finally, the improved algorithm is implemented in the one-dimensional stress wave propagation problem, and good numerical results are obtained.
【作者单位】: 西北工业大学航空学院;
【基金】:国家自然科学基金(11272266) 西北工业大学研究生创业种子基金(Z2014083)资助项目
【分类号】:O35
本文编号:2437512
[Abstract]:Finite particle method (FPM) is an important development of traditional SPH method, which greatly improves the accuracy of particle calculation in the boundary region. However, high time-consuming and potential numerical instability are the key factors restricting the application of FPM. Based on the matrix decomposition of FPM's basic equation, an improved FPM algorithm with special scheme is established. This method preserves the high computational accuracy of the FPM method in the boundary region, and avoids the limitation of the reversibility of the coefficient matrix by the traditional FPM method successfully, and greatly improves the computational efficiency. Finally, the improved algorithm is implemented in the one-dimensional stress wave propagation problem, and good numerical results are obtained.
【作者单位】: 西北工业大学航空学院;
【基金】:国家自然科学基金(11272266) 西北工业大学研究生创业种子基金(Z2014083)资助项目
【分类号】:O35
【相似文献】
相关期刊论文 前1条
1 赵阳,高淑华,黄涛,唐国安;复杂结构的动力学模型缩聚[J];复旦学报(自然科学版);2005年03期
相关会议论文 前1条
1 王春江;王人鹏;钱若军;王颖;;矩阵分解技术在体系性态综合分析中的初步应用[A];“力学2000”学术大会论文集[C];2000年
,本文编号:2437512
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2437512.html