当前位置:主页 > 科技论文 > 力学论文 >

Modeling and Simulation Study of Newtonian and Non-newtonian

发布时间:2022-02-13 11:09
  Newtonian fluids like water, air, milk, glycerol, thin motor oil and alcohol and Non-Newtonian fluids such as paint, ketchup, blood, custard, toothpaste, shampoo and starch suspensions etc. vary tremendously in their properties and behaviors. It is immensely important to study the physical behavior of these fluids in order to enhance their performance in various indus-trial and manufacturing procedures. One of the pertinent non-Newtonian fluid nowadays is nanofluid which has extensive range of u... 

【文章来源】:中国科学技术大学安徽省211工程院校985工程院校

【文章页数】:148 页

【学位级别】:博士

【文章目录】:
Acknowledgements
Abstract
1 Introduction
    1.1 Nanofluids
    1.2 Axisymmetric Stagnation point
    1.3 Magnetohydrodynamics (MHD)
    1.4 Riga Plate
    1.5 Homogeneous Heterogeneous Chemical Reactions
    1.6 Capillary Rise Phenomenon
    1.7 Deformable Porous Medium
    1.8 Dimesionless Parameters
        1.8.1 Prandtl number (Pr)
        1.8.2 Schmidt number (Sc)
        1.8.3 Lewis number (Le)
        1.8.4 Eckert number (Ec)
        1.8.5 Reynolds number (Re)
        1.8.6 Nusselt number (Nu)
        1.8.7 Sherwood number(Sh)
    1.9 Conservation Laws
        1.9.1 Law of Conservation of Mass
        1.9.2 Law of Conservation of Momentum
        1.9.3 Law of conservation of energy
    1.10 Darcy's Law
    1.11 Mixture Theory: General Framework
    1.12 Miscellaneous Solution Methods
        1.12.1 Homotopy Analysis Method
        1.12.2 Optimal Homotopy Analysis Method
        1.12.3 Shooting Method
        1.12.4 Method of Lines
2 Axisymmetric magnetohydrodynamic flow of nanofluid under heat generation/absorptioneffects
    2.1 Geometry of the Problem
    2.2 Model Formulation
    2.3 Solution Methodology
    2.4 Results and Discussion
    2.5 Closing Remarks
3 Analytical investigation of third grade nanofluidic flow over a riga plate usingCattaneo-Christov model
    3.1 Geometry of the problem
    3.2 Model Formulation
    3.3 Solution Methodology
    3.4 Results and Discussion
    3.5 Closing Remarks
4 Homogeneous heterogeneous reactions in a carbon/water, kerosene nanofluidicflow over a riga surface
    4.1 Geometry of the Problem
    4.2 Model Formulation
    4.3 Solution Methodology
    4.4 Results and Discussion
    4.5 Closing Remarks
5 Infiltration of MHD liquid into a deformable porous material
    5.1 Geometry of the problem
    5.2 Model Formulation
    5.3 Steady State Solution
    5.4 Solution Methodology
    5.5 Results and Discussion
    5.6 Closing Remarks
References
Publications


【参考文献】:
期刊论文
[1]Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects[J]. T.Hayat,M.Ijaz Khan,M.Waqas,A.Alsaedi,T.Yasmeen.  Chinese Journal of Chemical Engineering. 2017(03)
[2]Accurate solutions for viscoelastic boundary layer flow and heat transfer over stretching sheet[J]. A.MASTROBERARDINO.  Applied Mathematics and Mechanics(English Edition). 2014(02)
[3]Series solutions of annular axisymmetric stagnation flow and heat transfer on moving cylinder[J]. A.MASTROBERARDINO.  Applied Mathematics and Mechanics(English Edition). 2013(09)



本文编号:3623080

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/lxlw/3623080.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e9e0b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com