当前位置:主页 > 科技论文 > 农业技术论文 >

利用Landsat时序NDVI数据进行新疆石河子垦区灌溉作物分类

发布时间:2017-12-25 20:37

  本文关键词:利用Landsat时序NDVI数据进行新疆石河子垦区灌溉作物分类 出处:《测绘通报》2016年09期  论文类型:期刊论文


  更多相关文章: NDVI S-G滤波 时间序列 SVM


【摘要】:精确的农作物分类信息对于农业环境评估、水资源利用规划非常重要,尤其是在干旱、半干旱地区。本文利用30 m分辨率的Landsat NDVI时间序列数据进行了新疆石河子垦区混合农作物精确区分的潜力研究。首先利用S-G滤波重构了Landsat NDVI时间序列,然后基于SVM模型对研究区域农业类型进行了精确分类。在SVM分类模型作用下,S-G重构后的时间序列有效地将该地区棉花、玉米、小麦等主要作物区分开来,精度高于0.86,Kappa系数大于0.82。结果表明,S-G滤波能够有效提高NDVI时间序列数据质量;TM影像时间序列在监测干旱、半干旱地区的作物类型和种植方式随时间的变化方面存在巨大潜力。
【作者单位】: 北京交通大学;石河子大学;中国科学院遥感与数字地球研究所;
【基金】:兵团科技攻关与成果转化计划(2015AD108)
【分类号】:S127
【正文快照】: 随着精准农业的发展,农业的用水评估、环境评估、农业估产都需要精确的农作物信息,特别是在干旱、半干旱地区,精确的农业分类信息在水资源保护合理利用等方面具有非常重大的意义。利用遥感手段来获得农业的精确分类信息是一种快速有效的方法。利用归一化植被指数(NDVI)时间序

【相似文献】

相关期刊论文 前10条

1 张艳君;梁运香;唐磊;;天气和气候的时间序列特征分析[J];农业与技术;2012年06期

2 向杰;程昌明;张轶;;小波分析在时间序列中的分析应用[J];节水灌溉;2013年12期

3 杨蕊;王龙;余航;沈立群;田琳;;昆明历史洪涝灾害时间序列分形特征研究[J];安徽农业科学;2012年07期

4 廖文辉;夏成锋;;关联时间序列异常数据的预警模型研究[J];仲恺农业工程学院学报;2012年02期

5 李绍石;胡正军;王洪全;;稻田飞虱、狼蛛种群密度动态数据时间序列预报模型[J];植物保护学报;1989年01期

6 胡致强,耿鸿江,李肥芬;小样本时间序列的灰色组合模型研究及应用[J];农业系统科学与综合研究;1993年01期

7 孙春薇;王旭磊;辛永训;吴春妹;;几种关于时间序列季节调整方法的研究[J];青岛农业大学学报(自然科学版);2007年02期

8 周文;曹琳;;时间序列在干旱区棉花需水量预测中的应用[J];安徽农业科学;2008年23期

9 李鑫川;徐新刚;王纪华;武洪峰;金秀良;李存军;鲍艳松;;基于时间序列环境卫星影像的作物分类识别[J];农业工程学报;2013年02期

10 廖娟;阮运飞;;一种基于时间序列的自然灾害农业辅助决策系统[J];电脑知识与技术;2014年12期

相关会议论文 前10条

1 周家斌;张海福;杨桂英;;多维多步时间序列预报方法及其应用[A];中国现场统计研究会第九届学术年会论文集[C];1999年

2 马培蓓;纪军;;基于时间序列的航空备件消耗预测[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年

3 卢世坤;李夕海;牛超;陈蛟;;时间序列的非线性非平稳特性研究综述[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年

4 李强;;基于线性模型方法对时间序列中异常值的检测及证券实证分析[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(上册)[C];2002年

5 戴丽金;何振峰;;基于云模型的时间序列相似性度量方法[A];第八届中国不确定系统年会论文集[C];2010年

6 谢美萍;赵希人;庄秀龙;;多维非线性时间序列的投影寻踪学习逼近[A];'99系统仿真技术及其应用学术交流会论文集[C];1999年

7 张大斌;李红燕;刘肖;张文生;;非线性时问序列的小波-模糊神经网络集成预测方法[A];第十五届中国管理科学学术年会论文集(下)[C];2013年

8 黄云贵;;基于时间序列的电网固定资产投资规模研究[A];2012年云南电力技术论坛论文集(文摘部分)[C];2012年

9 李松臣;张世英;;时间序列高阶矩持续和协同持续性研究[A];21世纪数量经济学(第8卷)[C];2007年

10 陈赫;罗声求;;历史横断面数据的时间序列化[A];科学决策与系统工程——中国系统工程学会第六次年会论文集[C];1990年

相关重要报纸文章 前6条

1 ;《时间序列与金融数据分析》[N];中国信息报;2004年

2 何德旭 王朝阳;时间序列计量经济学:协整与有条件的异方差自回归[N];中国社会科学院院报;2003年

3 刘俏;让数据坦白真相[N];21世纪经济报道;2003年

4 西南证券高级研究员 董先安邋德圣基金研究中心 郭奔宇;预计6月CPI同比上涨7.2%[N];证券时报;2008年

5 东证期货 王爱华 杨卫东;两年涨跌轮回 秋季普遍下跌[N];期货日报;2009年

6 任勇邋郑重;中国对世界钢材价格的影响实证分析[N];现代物流报;2007年

相关博士学位论文 前10条

1 张墨谦;遥感时间序列数据的特征挖掘:在生态学中的应用[D];复旦大学;2014年

2 张德成;滑坡预测预报研究[D];昆明理工大学;2015年

3 苗圣法;时间序列的模式检测[D];兰州大学;2015年

4 翁同峰;时间序列与复杂网络之间等价性问题及表征应用研究[D];哈尔滨工业大学;2015年

5 杨婷婷;用Argo浮标结合卫星观测估算北太平洋经向热输运[D];中国科学院研究生院(海洋研究所);2015年

6 史文彬;时间序列的相关性及信息熵分析[D];北京交通大学;2016年

7 王晓晔;时间序列数据挖掘中相似性和趋势预测的研究[D];天津大学;2003年

8 李桂玲;时间序列的分割及不一致发现研究[D];华中科技大学;2012年

9 周勇;时间序列时序关联规则挖掘研究[D];西南财经大学;2008年

10 张勇;时间序列模式匹配技术研究[D];华中科技大学;2012年

相关硕士学位论文 前10条

1 陈健;基于多变量相空间重构的投资组合策略研究[D];华南理工大学;2015年

2 兰鑫;时间序列的复杂网络转换策略研究[D];西南大学;2015年

3 米晓将;区域尺度下月均气温的时空演化格局研究[D];昆明理工大学;2015年

4 张鸣敏;基于支持向量回归的PM_(2.5)浓度预测研究[D];南京信息工程大学;2015年

5 林健;基于改进小世界回声状态网的时间序列预测[D];渤海大学;2015年

6 曹智丽;日气温和干旱指数支持向量回归预测方法[D];南京信息工程大学;2015年

7 高雄飞;基于分形理论的土壤含水量时间序列特性分析[D];长安大学;2015年

8 姚茜;城市安全生产发展目标研究[D];中国地质大学(北京);2015年

9 谢翠颖;苏州社会消费品零售总额简析[D];苏州大学;2015年

10 包仁义;基于时间序列的搜索引擎评估模型算法研究[D];东北师范大学;2015年



本文编号:1334361

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1334361.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fb2b4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com