当前位置:主页 > 科技论文 > 农业技术论文 >

应用高光谱植被指数反演冬小麦叶绿素含量的光谱指标敏感性研究

发布时间:2018-01-01 18:29

  本文关键词:应用高光谱植被指数反演冬小麦叶绿素含量的光谱指标敏感性研究 出处:《科学技术与工程》2016年15期  论文类型:期刊论文


  更多相关文章: 高光谱遥感 叶绿素反演 光谱指标 敏感性 植被指数


【摘要】:高光谱植被指数反演叶绿素含量的精度除与模型有关外,光谱指标中心波长、波段宽度、信噪比等的差异也会带来一定的影响。研究基于实测光谱数据,结合波段模拟、噪音分析等方法,研究不同的光谱指标对植被指数反演叶绿素含量的影响,分析用于反演的光谱指标的敏感性,结果表明:1最佳中心波长的位置与适用于高低覆盖的植被指数类型有关,反演精度在一定范围内并不随着波段宽度的增加而提高;2不同植被指数抗噪声能力有一定的差异,其中DVI(difference vegetation index),NDVI(normalized difference vegetation index)等抗噪能力比较强,MCARI(modified chlorophyll absorption ratio index)和TCARI(transformed chlorophyll absorption ratio index)抗噪能力比较弱;3联合反演模型反演结果为R~2=0.741 5,RMSE=0.402 6,优于MTCI(MERIS terrestrial chlorophyll index)的反演结果,通过模拟HJ1A-HSI,Hyperion等数据,研究出联合反演模型在不同高光谱传感器下有一定的适用性。
[Abstract]:Hyperspectral Vegetation Index inversion of chlorophyll content in precision and model of spectral index, center wavelength, band width, different signal-to-noise ratio will bring about a certain impact. Research based on measured spectral data, combined with the band simulation, noise analysis, influence of spectral index of different vegetation index inversion of chlorophyll content the analysis for sensitivity, spectral index inversion results showed that: 1 the best wavelength position and vegetation index types used in high and low coverage, the inversion precision in a certain range with the increase of the width of the band is not increased; 2 different vegetation index anti noise ability have some differences, including DVI (difference vegetation index NDVI (normalized), difference vegetation index) and anti noise ability, MCARI (modified chlorophyll absorption ratio index (transformed) and TCARI Chlorophyll absorption ratio index) anti noise ability is weak; 3 joint inversion model inversion results for R~2=0.741 5, RMSE=0.402 6, MTCI (MERIS terrestrial chlorophyll better than index) inversion result through the simulation of HJ1A-HSI, Hyperion and other data, developed a joint inversion model has some applicability in different hyperspectral sensors.

【作者单位】: 河南理工大学测绘与国土信息工程学院;中国科学院遥感与数字地球研究所高光谱遥感应用技术研究室;
【基金】:国家自然科学基金(41371359);国家自然科学基金(41501396)资助 遥感科学国家重点实验室开放基金(OFSLRSS201508) 高分率对地观测系统重大专项
【分类号】:S512.11;S127
【正文快照】: 叶绿素是监测植被受胁迫和健康状况的重要参数[1,2]。高光谱指数法反演小麦叶绿素含量是目前应用最常用的方法之一[3—5]。应用高光谱指数法反演植被叶绿素的研究主要集中在如何克服土壤背景和避免植被指数饱和等方面,通过构建或优选指数,以达到有效应用的目的[6,7]。如在避免

【相似文献】

相关期刊论文 前10条

1 王福民;黄敬峰;王秀珍;;基于水稻背景特性的植被指数参数修正研究[J];农业工程学报;2008年05期

2 何彬方;冯妍;吴文玉;范伟;;安徽省近十年植被指数时空变化特征[J];生态学杂志;2010年10期

3 解文欢;张有智;吴黎;;基于植被指数对望奎县粮食作物产量预测方法的研究[J];黑龙江农业科学;2011年04期

4 康耀江;;植被指数在草地遥感中的应用初探[J];湖南农业科学;2011年Z1期

5 张仁华,饶农新,廖国男;植被指数的抗大气影响探讨[J];植物学报;1996年01期

6 国红;彭世揆;赵博光;;内蒙古鄂托克前旗地区苦豆子植被指数信息提取的研究[J];林业资源管理;2008年04期

7 范文义;白新源;冯欣;李明泽;杜华强;;哈尔滨热岛效应与植被指数关系的动态分析[J];东北林业大学学报;2009年06期

8 杜春雨;范文义;;叶面积指数与植被指数关系研究[J];林业勘查设计;2013年02期

9 杨洁;隋学艳;杨丽萍;郭洪海;朱振林;;山东省植被指数影像数据库的设计与实现[J];安徽农业科学;2011年29期

10 胡晓雯;曹爽;赵显富;;基于植被指数的绿地信息提取的比较[J];南京信息工程大学学报(自然科学版);2012年05期

相关会议论文 前10条

1 付卓;王锦地;施建成;宋金玲;靳华安;张立新;张钟军;赵少杰;陈柏松;;微波植被指数与光学植被指数在地面尺度上的关系研究[A];遥感定量反演算法研讨会摘要集[C];2010年

2 辛红梅;张杰;马毅;初佳兰;;基于植被指数的赤潮高光谱敏感波段确定方法初探[A];第十四届全国遥感技术学术交流会论文选集[C];2003年

3 范锦龙;;我国晴空分布及对旬合成植被指数的影响[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册)[C];2004年

4 张树誉;李登科;李星敏;周辉;;遥感植被指数及其在县域生态环境监测评估中的应用[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

5 安培浚;颉耀文;;绿洲植被指数的遥感定量研究-以民勤绿洲为例[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

6 江东;王乃斌;杨小唤;刘红辉;;植被指数—地面温度特征空间及其应用[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年

7 傅军;张杰;辛红梅;马毅;;基于植被指数的高光谱遥感水陆识别方法初探[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年

8 肖乾广;肖岚;李亚君;;EOS/MODIS,FY-1D/MVISR,NOAA/AVHRR的归一化植被指数的同化研究[A];全国国土资源与环境遥感应用技术研讨会论文集[C];2009年

9 杨道勇;肖云岫;;利用WT-10接收的1B高分辨云图数据生成植被指数图像[A];中国气象学会2005年年会论文集[C];2005年

10 何全军;曹静;张月维;;基于MODIS的广东省植被指数序列构建与应用[A];中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集[C];2007年

相关重要报纸文章 前1条

1 魏景云;气象卫星监测干旱 全国旱情一目了然[N];中国气象报;2003年

相关博士学位论文 前4条

1 卫炜;MODIS双星数据协同的耕地物候参数提取方法研究[D];中国农业科学院;2015年

2 张立福;通用光谱模式分解算法及植被指数的建立[D];武汉大学;2005年

3 岳文泽;基于遥感影像的城市景观格局及其热环境效应研究[D];华东师范大学;2005年

4 刘占宇;水稻主要病虫害胁迫遥感监测研究[D];浙江大学;2008年

相关硕士学位论文 前10条

1 刘吉凯;基于HJ卫星数据的甘蔗长势监测与估产研究[D];南京信息工程大学;2015年

2 郑亚云;榆林NDVI时空变化及驱动因子研究[D];长安大学;2015年

3 何春萌;经济利益驱动下的工矿开发对人类生存环境的影响[D];内蒙古大学;2015年

4 刘晓静;基于不同遥感数据源的秦岭地区植被指数对比分析[D];长安大学;2015年

5 王鑫梅;氮素水平对不同土壤质地杨树叶片光谱特性和光合能力的影响[D];河北农业大学;2015年

6 官雨薇;基于遥感影像的全球荒漠化指数构建及趋势分析[D];电子科技大学;2015年

7 胡文;黑龙江省雹灾遥感监测及时空特征分析[D];东北农业大学;2015年

8 吴明业;基于TVDI的土壤干旱遥感监测研究及验证[D];安徽农业大学;2014年

9 马瑞;增强植被指数算法的研究及其在生态环境遥感产品生产分系统的应用[D];河南大学;2015年

10 曾水生;双季稻生长指标光谱监测模型研究[D];江西农业大学;2015年



本文编号:1365700

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1365700.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户09887***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com