厌氧折流板反应器处理疫病动物尸骸废水的产酸及产甲烷特性
本文关键词: 厌氧折流板反应器 疫病动物尸骸废水 产酸特性 产甲烷特性 高温厌氧 出处:《华南理工大学》2016年硕士论文 论文类型:学位论文
【摘要】:疫病动物尸骸废水是一种高浓度有机废水,其厌氧降解过程中低分子有机酸的积累类型与积累水平对甲烷产量有较大影响,为实现疫病动物尸骸废水的高效厌氧生物降解及甲烷产率最大化的目标,本实验采用三格室厌氧折流板反应器(ABR)处理疫病动物尸骸废水,对高浓度有机废水厌氧降解效率的共性限制性因素进行研究,研究不同进水有机负荷、水力停留时间和温度对厌氧过程中产酸及产甲烷特性的影响,主要的研究结果如下:(1)不同进水有机负荷对ABR处理疫病动物尸骸废水的产酸及产甲烷特性的影响研究表明:进水有机负荷由0.9 g/(L·d)升至8.1 g/(L·d)时,COD最终去除率达87%以上;负荷进一步提高至11.9 g/(L·d)时,各格室中最终VFAs积累总量分别达到4320、3420和2510 mg/L,COD去除率降至61%。反应器内主要产酸类型为乙酸型,其次为丙酸和丁酸,随着进水负荷的提高,逐渐出现少量异戊酸、戊酸、己酸和异己酸。乙酸平均百分含量随负荷的升高而降低,丙酸和丁酸则反之;当进水负荷为4.6 g/(L·d)时,处理效果和甲烷产率最优,三个格室甲烷产率分别达到最大值:0.33、0.32和0.33LCH4/gCOD,当负荷高于8.1 g/(L·d)时,总VFAs、丙酸和丁酸的积累成为厌氧产甲烷过程的抑制因素。(2)不同水力停留时间(HRT)对ABR处理疫病动物尸骸废水的产酸及产甲烷特性的影响研究表明:HRT分别为4d、2d、1d、1/2d和1/4d时,ABR对COD的去除率最终稳定在94%、95%、89%、53%和28%,出水碱度含量分别为4523、4154、3465、1844和727 mg/L。HRT小于1/2d时,水力冲击负荷对反应器运行效果造成明显的影响;ABR最终VFAs积累量分别为287、458、699、2189和3926 mg/L,三个格室VFAs累积量均随HRT的降低而增加;当HRT为1d和2d时,处理效果和甲烷产率最优:格室一、二的甲烷产率在HRT为2d时达到最大值,分别为0.307和0.321 LCH4/gCOD,格室三的甲烷产率在HRT为1d时达到最大值,为0.330 LCH4/gCOD;格室一的辅酶F420含量在HRT为2d时达到最大值,其值为0.504μmol/gVSS,而格室二、三则在HRT为1d时达到最大,分别为0.604和0.665μmol/gVSS,HRT小于1/2d时,各格室甲烷产率急剧下降,三个格室F420在HRT为1/4d时分别降至0.045、0.065和0.109μmol/gVSS,产甲烷活性受到严重的抑制;各格室污泥的EPS中蛋白质含量远大于多糖含量,HRT降至1/2d和1/4d时,格室二、三中蛋白质和多糖含量明显增加,而格室一则在HRT为1/4d时,蛋白质和多糖明显增加。EPS中m(蛋白质)/m(多糖)大体上随HRT降低而呈现降低趋势,HRT降低,细胞分泌的EPS增加。(3)高温ABR反应器的启动研究表明:采用直接升温的方式启动厌氧ABR反应器,运行70天后,ABR的COD去除率仅为17%,三个格室VFAs积累量分别为4435、4276和4097mg/L,格室二、三内大量微生物死亡,反应器启动失败;采用逐步升温中温厌氧体系的方式启动高温厌氧ABR反应,运行50d后,COD去除率达到80%,三个格室VFA积累量分别为3148、1175和835mg/L,高温ABR反应器启动成功。(4)不同温度对ABR处理疫病动物尸骸废水的产酸及产甲烷特性的影响研究表明:高温ABR反应器运行效果高于中温反应器,主要体现在:相应格室中,高温ABR的COD去除效率为92%,而中温则为86%。高温ABR反应器较中温反应器可分解更多的蛋白质,产生更多的碱度,高温ABR中三个格室最终碱度含量为2153、3634和4513 mg/L,而中温ABR反应器中碱度含量分别为1792、3145和4045 mg/L。高温ABR各格室内VFAs积累量明显低于中温反应器,高温ABR中三个格室的最终VFAs积累量分别为2814mg/L、1150mg/L和329 mg/L,中温ABR中则分别为3028mg/L、1743 mg/L和809 mg/L。高温反应中各格室的甲烷产率略高于中温反应器,其值分别为0.26、0.331和0.336 LCH4/gCOD,中温ABR中则分别为0.251、0.31和0.321 LCH4/gCOD。高温ABR中各格室的污泥的F420含量均明显高于中温反应器,分别为0.440、0.652和0.781μmol/gMLVSS,中温ABR中则分别为0.393、0.604和0.665μmol/gMLVSS。
[Abstract]:Disease animal bones wastewater is a high concentration organic wastewater, and the accumulation level of accumulation types on anaerobic degradation of low molecular organic acids have great influence on methane production, to achieve the maximum of animal diseases remains wastewater anaerobic biodegradation and methane yield, this experiment adopts three compartment anaerobic baffled reactor (ABR) treatment of animal diseases remains of wastewater of high concentration organic wastewater anaerobic degradation efficiency of the common restriction factors, study the different influent organic loading, hydraulic retention time and temperature on the anaerobic acidogenic process and influence of methane production characteristics, the main results are as follows: (1) effects of different influent organic acid production load on the ABR treatment of animal diseases remains of wastewater and methane production characteristics show that the influent organic loading from 0.9 g/ (L - D) to 8.1 g/ (L - D), the COD removal rate of 87% to On load; further increased to 11.9 g/ (L - D), each compartment in the final total accumulation reached 43203420 VFAs and 2510 mg/L, the removal rate of COD to 61%. in the reactor mainly acid into acetic acid, followed by propionic acid and butyric acid, with the increase of load water, is a small amount of isovaleric acid gradually, pentanoic acid, caproic acid and acetic acid. The average alien percentage decreases with the load increasing, propionic acid and butyric acid and vice versa; when the water load was 4.6 g/ (L - D), the treatment effect and the methane yield optimal, three compartment methane yield reached the maximum value: 0.33,0.32 and 0.33LCH4/gCOD, when the load is higher than 8.1 g/ (L - D), total VFAs, propionic acid and butyric acid accumulation become inhibitory factors of anaerobic process. (2) different hydraulic retention time (HRT) showed that the effect of ABR acid production wastewater and treatment of animal diseases remains the characteristics of methane generation: HRT respectively 4D, 2D, 1D. 1/2 D and 1/4d ABR, the removal rate of COD remained at 94%, 95%, 89%, 53% and 28%, the effluent alkalinity content were 4523415434651844 and 727 mg/L.HRT is less than 1/2d, the hydraulic shock load caused obvious effects on the operating efficiency of the reactor; the final ABR VFAs accumulation were 2874586992189 and 3926 mg/L, three standard room VFAs accumulation were increased with the decrease of HRT; when the HRT is 1D and 2D, the treatment effect and the methane yield optimal: geocell, methane yield of two in HRT 2D reached the maximum value, respectively 0.307 and 0.321 LCH4/gCOD, cell methane yield of three in HRT 1D the maximum value is 0.330 LCH4/gCOD; cell content of coenzyme F420 in a HRT 2D reached the maximum value, its value is 0.504 mol/gVSS, and two in the three compartment, HRT reached the maximum at 1D, respectively 0.604 and 0.665 mol/gVSS, HRT is less than 1/2d, the methane yield in each compartment sharp Drop, three compartment F420 to 0.045,0.065 and 0.109 mol/gVSS respectively in HRT 1/4d, methanogenic activity was severely inhibited; the protein content in each compartment of the sludge in EPS is far greater than the content of polysaccharide, HRT to 1/2d and 1/4d, standard room two, third protein and polysaccharide content increased significantly. And a compartment in the HRT of 1/4d, protein and polysaccharide significantly increased in.EPS (M protein) /m (polysaccharide) decreased substantially with the decrease of HRT and decreased, HRT cell secretion of EPS is increased. (3) study on the start temperature of ABR reactor showed that using direct heating start the ABR anaerobic reactor, 70 days after ABR, the removal rate of COD is only 17%, three compartment VFAs accumulation were 44354276 and 4097mg/L, standard room two, three in a large number of microbial death, reactor start-up failure; the gradual warming of mesophilic anaerobic system start high temperature anaerobic reaction ABR, After running 50D, COD removal rate reached 80%, three compartment VFA accumulation were 31481175 and 835mg/L, ABR high temperature reactor started successfully. (4) study on the effects of different temperature on ABR acid production wastewater treatment of animal diseases of bones and methanogenic characteristics show that the running effect of high temperature ABR reactor is higher than the temperature response is mainly reflected in the corresponding chamber, high temperature ABR COD removal efficiency is 92%, and the temperature is 86%. high temperature ABR reactor is temperature in the reactor can be decomposed more protein, produce more alkalinity, three chambers in high temperature ABR final alkalinity content of 21533634 and 4513 mg/L, and the alkalinity the content of ABR in temperature in the reactor were 17923145 and 4045 mg/L. high temperature accumulation of ABR VFAs was significantly lower than that in the case of indoor temperature reactor, the final VFAs three lattice in high temperature ABR room accumulation were 2814mg/L, 1150mg/L and mg/L in 329, ABR in temperature were 302 8mg/L, the methane yield in each compartment of 1743 mg/L and 809 mg/L. temperature is slightly higher than that of temperature in the reactor, the values were 0.26,0.331 and 0.336 LCH4/gCOD, the content of F420 in ABR medium temperature respectively in each compartment of 0.251,0.31 and 0.321 LCH4/gCOD. in high temperature ABR sludge were significantly higher than that of temperature in the reactor, respectively. 0.440,0.652 and 0.781 mol/gMLVSS, the temperature in ABR is respectively 0.393,0.604 and 0.665 mol/gMLVSS.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X713
【相似文献】
相关期刊论文 前10条
1 丁维新,蔡祖聪;沼泽产甲烷能力和途径差异的机制[J];农村生态环境;2002年02期
2 董春娟,吕炳南,马立,吕岩松;采用微氧产甲烷技术降解水中的毒性物质[J];中国给水排水;2003年08期
3 吴泽;王海燕;程水源;;生物反应器填埋场产甲烷规律的模拟研究[J];环境污染治理技术与设备;2006年10期
4 祖波;祖建;周富春;汪林;;产甲烷菌的生理生化特性[J];环境科学与技术;2008年03期
5 李美群;邓洁红;熊兴耀;谭兴和;周红丽;李清明;苏小军;张喻;唐艳红;彭丹;张艳艳;;产甲烷菌的研究进展[J];酿酒科技;2009年05期
6 刘德燕;丁维新;;天然湿地土壤产甲烷菌及其影响因子研究进展[J];地理科学;2011年02期
7 张云茹;刘逸轩;沈庆涛;王永忠;;一种产甲烷优势菌群的筛选方法[J];生物技术;2011年02期
8 李军;张雅南;邓娴;张文文;杨宏宇;;一株耐冷产甲烷菌的分离及其生长特性初步研究[J];可再生能源;2012年02期
9 李会;马骏;崔薇薇;肇莹;王金艳;张淼;杨涛;;一株低温产甲烷菌的分离和鉴定[J];辽宁农业科学;2012年02期
10 张冰;孔德勇;路阳;;温度降低对产甲烷效能的影响[J];哈尔滨商业大学学报(自然科学版);2012年02期
相关会议论文 前9条
1 宋素琴;张志东;顾美英;房世杰;;低温产甲烷菌的研究现状[A];2008年中国微生物学会学术年会论文摘要集[C];2008年
2 李秋敏;杨斌;张无敌;马煜;李建昌;刘士清;徐锐;尹芳;陈玉保;;蔗糖发酵产氢与产甲烷能源转换效率的研究[A];2011年中国沼气学会学术年会暨第八届理事会第二次会议论文集[C];2011年
3 麻婷婷;郑珍珍;代莉蓉;承磊;张辉;;不同pH缓冲液对乙酸降解产甲烷菌群结构的影响[A];第五届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文摘要集[C];2013年
4 邓晓;李勤奋;;稻鸭复合生态种养对产甲烷菌种群数量的影响[A];中国环境保护优秀论文集(2005)(下册)[C];2005年
5 杨森林;周琦颖;苟敏;汤岳琴;木田建次;江霞;;硫酸盐对中温厌氧乙酸产甲烷的影响[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
6 黎霞;承磊;张辉;;高压胁迫对原油降解产甲烷菌群落结构的影响[A];第五届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文摘要集[C];2013年
7 刘晓刚;丁杰;王豹;刘先树;;糖蜜废水产氢-产甲烷耦合工艺启动特性研究[A];Proceedings of Conference on Environmental Pollution and Public Health(CEPPH 2012)[C];2012年
8 成艳芬;毛胜勇;MK Theodorou;朱伟云;;厌氧真菌活力及传代频率对真菌与产甲烷菌共培养液代谢与菌群的影响[A];第六次全国饲料营养学术研讨会论文集[C];2010年
9 郭燕锋;孔晓英;刘婉玉;李东;王德汉;袁振宏;孙永明;;有机负荷对厨余垃圾常温厌氧发酵产甲烷的影响[A];全国农村清洁能源与低碳技术学术研讨会论文集[C];2011年
相关重要报纸文章 前2条
1 况叶;日本期待收获巨量天然气[N];地质勘查导报;2010年
2 李新明 李瑛;农业资源快速再生模式[N];山西科技报;2004年
相关博士学位论文 前10条
1 张小妹;以含氮杂环化合物为碳源短程反硝化厌氧产甲烷及复合工艺的特征分析与性能研究[D];太原理工大学;2015年
2 张琛;铵影响厌氧反应器污泥丙酸和丁酸互营氧化产甲烷过程的机理[D];中国农业大学;2013年
3 王立影;烷烃厌氧降解产甲烷体系菌群结构与功能的研究[D];华东理工大学;2011年
4 陈t,
本文编号:1463488
本文链接:https://www.wllwen.com/kejilunwen/nykj/1463488.html