翻耕位置和深度对坡耕地水土流失的影响
本文关键词: 人工降雨 坡度 翻耕位置 翻耕深度 产流 产沙 出处:《山西农业大学》2015年硕士论文 论文类型:学位论文
【摘要】:为研究坡耕地上不同翻耕位置和深度的水土流失影响,本试验选在山西省吕梁市方山县沙沟水土保持监测站,在55mm/h雨强条件下对不同坡度(5°、10°、15°)、不同翻耕位置(坡面上部、坡面中部、坡面下部)及不同翻耕深度(10cm、15cm、20cm)共27种组合条件进行人工模拟降雨,研究不同的处理组合对坡面径流和土壤侵蚀的影响,经过分析主要得出以下结论:(1)在55mm/h雨强条件下,开始产流时间随着坡度的增大而减小,随翻耕位置的上、中、下依次增大,随着翻耕深度的增加而增加;坡度、翻耕位置及翻耕深度对开始产流时间的均为极显著影响(P0.01),且显著水平表现为:坡度翻耕位置翻耕深度。(2)在55mm/h雨强条件下,不论哪种组合条件,径流随时间均是先增大后逐渐趋于稳定;径流量随着坡度的增加而增加,随着翻耕位置的中、上、下而增大,随着翻耕深度的增大而减小;坡度及翻耕位置对产流开始后27mmin所得到的径流总量均为极显著影响(P0.01),翻耕深度对产流开始后27mmin所得到的径流总量影响不显著(P0.05);对径流总量影响显著水平表现为:坡度翻耕位置翻耕深度。(3)在55mm/h雨强条件下,不论哪种组合条件,坡面径流泥沙浓度随降雨的进行整体上呈现先减小,后逐渐趋于平稳的状态;坡面径流泥沙浓度随坡度的增大而增大,产流开始后27mmin所得到的累计泥沙量随着翻耕位置的中、上、下而增大,随着翻耕深度的增大而增大;坡度及翻耕位置对产流开始后27min所得到的累计产沙量均影响显著,且显著水平为极显著(P0.01),翻耕深度对累计产沙量影响不显著;对累计产沙量影响显著水平表现为:坡度翻耕位置翻耕深度。(4)坡地开荒选在坡面中部水土保持效益明显,坡面中部开荒比坡面上部开荒减少产流12.9%~16.0%,减少产沙3.3%~8.1%;坡面中部开荒比坡面下部开荒减少产流31.6%~37.8%,减少产沙40.5%~53.3%。
[Abstract]:In order to study the effects of soil erosion on different tilling positions and depths on sloping farmland, the experiment was conducted at the Shagou soil and Water Conservation Monitoring Station of Fangshan County, Luliang City, Shanxi Province. Under the condition of 55 mm / h rain intensity, the soil and water conservation sites of different slope degrees were 5 掳/ 10 掳/ 15 掳and different tilling positions (upper part of the slope), respectively. The effects of different treatments on runoff and soil erosion were studied by artificial simulation of rainfall under 27 combinations of different tillage depths (10 cm ~ (15) cm ~ (20 cm)) and different tillage depth (10 cm ~ (10) ~ 15 cm ~ (20 cm)) in the middle and lower part of slope surface. The main conclusions are as follows: (1) under the condition of 55 mm / h rain intensity, the beginning time of runoff production decreases with the increase of slope, increases in turn with the top, middle and lower of tilling position, and increases with the increase of tillage depth. The effects of tilling position and depth on the initial runoff yield were very significant, and the significant level was as follows: tilling depth of tilling position at slope tilling position. (2) under 55 mm / h rain intensity, no matter which combination condition, Runoff increases first and then tends to be stable with time, runoff increases with the increase of slope, increases with the middle, top and bottom of tilling position, and decreases with the increase of tillage depth. The slope and tilling position had significant effects on the total runoff after 27 min of runoff production, while the depth of tillage had no significant effect on the total runoff of 27 min after the beginning of runoff production, and the significant level of the effect on the total runoff was as follows: (1) the effect of tilling depth on the total amount of runoff was significant (P < 0.01), but the effect of tillage depth on the total amount of runoff was not significant (P 0.05). Slope tilling position tillage depth. 3) under 55 mm / h rain intensity, No matter which combination condition, the sediment concentration of runoff decreases first and then tends to steady gradually with the rainfall, and the sediment concentration of runoff increases with the increase of slope. The accumulative sediment amount obtained at 27 min after the beginning of runoff production increased with the middle, upper, lower and higher tillage depth, and the slope and tilling position significantly affected the accumulated sediment yield at 27 min after the beginning of runoff production. The significant level was P0.01N, the effect of tillage depth on the cumulative sediment yield was not significant, and the significant effect on the accumulated sediment yield was as follows: tilling depth of slope tilling position, tillage depth. 4) the benefit of soil and water conservation in the middle of the slope was obvious. In the middle part of the slope, there was a decrease of 31.6% and 40.5% and 53.3% in the middle part of the slope than in the lower part of the slope, while in the middle part of the slope it was lower than that in the lower part of the slope, while in the middle part of the slope it was lower than that in the lower part of the slope, and the yield of sand was decreased by 40.5% and 53.3%, compared with that in the middle part of the slope.
【学位授予单位】:山西农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S157
【共引文献】
相关期刊论文 前10条
1 张嘉晔;郝仕龙;赵西宁;;宁南山区气候变化与集水型生态农业建设研究[J];华北水利水电学院学报;2009年04期
2 沈渭寿,金燕,关有志,刘玉璋;陕—甘天然气管道工程对环境的影响及防治对策[J];环境科学研究;1999年06期
3 丁晋利;郑粉莉;;利用~7Be研究次降雨条件下浅沟集水区片蚀的空间分布[J];湖南师范大学自然科学学报;2011年06期
4 叶海彤;王志荣;白世强;;土壤侵蚀的环境磁学监测方法[J];中国环境监测;2006年05期
5 ;Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J];Science China(Earth Sciences);2010年04期
6 许炯心;黄河中游多沙粗沙区的风水两相侵蚀产沙过程[J];中国科学(D辑:地球科学);2000年05期
7 闫云霞;许炯心;;黄土高原地区侵蚀产沙的尺度效应研究初探[J];中国科学.D辑:地球科学;2006年08期
8 朱元骏;邵明安;;黄土高原水蚀风蚀交错带小流域坡面表土砾石空间分布[J];中国科学(D辑:地球科学);2008年03期
9 赵世伟;赵勇钢;吴金水;;黄土高原植被演替下土壤孔隙的定量分析[J];中国科学:地球科学;2010年02期
10 岳大鹏;董美云;;乡村聚落水蚀特征研究——以陕北3个典型乡村为例[J];江西农业大学学报;2010年02期
相关博士学位论文 前10条
1 刘刚;淮河流域峒柏大别山区植被退化机制与生态修复模式[D];山东农业大学;2010年
2 刘刚;淮河流域桐柏大别山区植被退化机制与生态修复模式[D];山东农业大学;2010年
3 丁晓东;农田养分流失风险评价及养分平衡管理研究[D];浙江大学;2010年
4 程复;黄土丘陵沟壑区生态恢复背景下土地利用变化对河川径流泥沙影响研究[D];北京林业大学;2011年
5 黎建强;三峡库区植物篱生态效益分析与评价[D];北京林业大学;2011年
6 孟万忠;历史时期汾河中游河湖变迁研究[D];陕西师范大学;2011年
7 汤秋香;洱海流域环境友好型种植模式及作用机理研究[D];中国农业科学院;2011年
8 王景燕;川南坡地几种退耕模式对土壤抗蚀性及有机质组分的影响[D];四川农业大学;2011年
9 王华;植被护坡根系固土及坡面侵蚀机理研究[D];西南交通大学;2010年
10 马晓;基于GIS的黄河水土流失评价预测模型研究[D];解放军信息工程大学;2009年
,本文编号:1552643
本文链接:https://www.wllwen.com/kejilunwen/nykj/1552643.html