南方花岗岩区典型崩岗小流域悬浮泥沙来源研究
本文选题:崩岗 切入点:小流域 出处:《福建农林大学》2017年硕士论文 论文类型:学位论文
【摘要】:为研究南方花岗岩区典型崩岗小流域内悬浮泥沙来源,本文以安溪县龙门镇崩岗侵蚀小流域为研究对象,在4种土地利用类型(侵蚀林地、茶园、耕地和崩岗侵蚀区)中共采集85个泥沙源地土样,同时在河道布设采样器收集降雨后的侵蚀悬浮泥沙。通过分析样品中的34种指纹因子,运用组合指纹法筛选出最佳指纹因子组合,并计算出各泥沙源地的泥沙运移规律。结果表明:(1)利用无参数Kruskal-Wallis检验对所有因子进行无参数检验,筛选出显著差异性(P0.05)的指纹识别因子。各子流域中符合条件的指纹因子有:子流域A(Li、Co、Ni、Sb、Ca共5种),子流域B(Li、Ti、Cr、Mn、Co、Ni、Cu、Zn、Sr、Cd、Sn、Pb、Ca、Al、V、As、P、石英和高岭土共19种),子流域C(Li、B、Ti、Cr、Mn、Co、Ni、Zn、Sr、Cd、Sn、Ba、Tl、Pb、Bi、Ca、Mg、V、Ga、As、P、K、石英、高岭土、辉石和微斜长石共26种)和子流域D(Li、Ti、Cr、Mn、Co、Ni、Cu、Zn、Sr、Cd、Sn、Ba、Tl、Pb、Bi、Fe、Ca、Mg、Al、V、Ga、As、P、K、石英、高岭土、辉石和微斜长石共28种)。(2)对通过无参数检验的指纹因子进行多元判别回归分析得出各子流域的最佳指纹因子组合。子流域A的最佳指纹因子组合是Li、Sb和Ca 3种指纹因子,子流域B的最佳指纹因子组合是Ti、Li、Sn和Ca 4种指纹因子,子流域C的最佳指纹因子组合是Ca、Li、Sn和Mn 4种指纹因子和子流域D的最佳指纹因子组合是Ca、Li、Sn、K和Ba这5种指纹因子。各子流域的累积贡献率都达到90%以上,符合分析要求。通过多元判别效果检验得各子流域中不同泥沙源地的正确判别率都在80%以上,说明所建立判别模型的可靠性。(3)利用多元混合模型定量得出各子流域悬浮泥沙的贡献率。子流域A中各泥沙源地的相对泥沙贡献率均值分别为侵蚀林地(55.26%),茶园(21.44%)和耕地(23.30%);子流域B中茶园(21.51%),耕地(20.07%)和崩岗侵蚀区(58.42%);子流域C中侵蚀林地(17.08%),茶园(42.18%),耕地(19.31%)和崩岗侵蚀区(21.43%);子流域D中侵蚀林地(21.76%),茶园(24.55%),耕地(29.99%)和崩岗侵蚀区(23.70%)。拟合优度检验值均大于0.8,再次证明该混合模型得出的结果可以接受。(4)泥沙源地悬浮泥沙贡献率与降雨之间的耦合关系:子流域A中茶园和耕地的泥沙贡献率均随降雨数据130增大而增大。子流域B中茶园泥沙贡献百分比与降雨雨量和平均降雨强度均呈正相关性,耕地的贡献值随降雨平均降雨强度的增大而增大;崩岗侵蚀区的悬浮泥沙贡献值与降雨雨量、历时和平均强度都呈极显著相关性,且为正比例相关。在子流域C中侵蚀林地的泥沙贡献百分比与降雨的平均降雨强度呈正相关,茶园贡献值与降雨雨量呈正相关,崩岗侵蚀区的贡献值也仅与降雨历时呈正相关。在子流域D中茶园的泥沙贡献值分别随降雨量和降雨历时呈显著性正相关。
[Abstract]:In order to study the source of suspended sediment in the typical gully valley of granite region in southern China, this paper takes Longmen town, Anxi County as the research object, and uses four kinds of land use types (eroding woodland, tea garden, etc.). A total of 85 soil samples from sediment sources were collected, and a sampler was installed in the river to collect erosion suspended sediment after rainfall. Through the analysis of 34 fingerprint factors in the samples, The best combination of fingerprint factors was screened by the combined fingerprint method, and the sediment transport law of each sediment source was calculated. The results show that the non-parametric Kruskal-Wallis test is used to test all the factors. The fingerprint identification factors of significant difference (P0.05) have been screened out. The suitable fingerprint factors in each subwatershed are as follows: AliCoCoNiNiSbCa-Ca in subwatershed, BLiTiCr-MnCr-MnCoNiNiCuPe, PbCaAlVAsPe, quartz and kaolin, 19 species of quartz and kaolin. A total of 26 species of pyroxene and microplagioclase) and in the subbasin of China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China, China. Twenty-eight species of pyroxene and microplagioclase were obtained by multivariate discriminant regression analysis of fingerprint factors without parameter test. The optimum combination of fingerprint factors of sub-watershed A was Li-Sb and Ca. The best fingerprint factor combination of subbasin B is Tiangliang Sn and Ca four fingerprint factors. The best fingerprint factor combination of C is four kinds of fingerprint factors of Caanliang Sn and mn, and the best combination of fingerprint factors of D is five kinds of fingerprint factors. The cumulative contribution rate of each subwatershed is above 90%. According to the requirement of analysis, the correct discriminant rate of different sediment sources in each subbasin is above 80% by multivariate discriminant effect test. It shows that the reliability of the discriminant model is established. (3) the contribution rate of suspended sediment in each sub-watershed is quantitatively obtained by using the multivariate mixed model. The mean relative sediment contribution rates of each sediment source in sub-watershed A are 55.26% and 21.44%, respectively, for eroded forest land and tea garden. In subbasin B, the tea garden is 21.51U, the cultivated land is 20.07) and the erosion area is 58.42U; in the subbasin C, the eroded woodland is 17.08m, the tea garden is 42.18U, the cultivated land is 19.31) and the erosion area is 21.4343; in the subbasin D, the woodland is 21.761U, the tea garden is 24.55m, the cultivated land is 29.9999m) and the collapse erosion area is 23.70m. The results obtained by the mixed model are all more than 0.8, which proves the coupling relationship between the contribution rate of suspended sediment and rainfall in sediment source area: the contribution rate of tea garden and cultivated land in sub-watershed A is both with rainfall. The percentage of tea garden sediment contribution in sub-watershed B was positively correlated with rainfall and average rainfall intensity. The contribution of cultivated land increases with the increase of the average rainfall intensity, and the suspended sediment contribution in the erosion area is significantly correlated with rainfall, duration and average intensity. The percentage of sediment contribution of eroded forest land in sub-watershed C was positively correlated with the average rainfall intensity of rainfall, and the value of tea garden contribution was positively correlated with rainfall rainfall. The contribution of tea garden in subbasin D was positively correlated with rainfall and rainfall duration.
【学位授予单位】:福建农林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S157
【参考文献】
相关期刊论文 前10条
1 刘志强;王烈恩;李翠翠;牛金林;;库区泥沙来源研究进展[J];浙江水利科技;2016年04期
2 李学增;黄炎和;林金石;蒋芳市;郝福星;关家椿;许煌基;杨丹丹;王振红;;不同宽度冲刷槽对崩岗崩积体产流产沙的影响[J];农业工程学报;2016年09期
3 刘婧春;岳大鹏;郭坤杰;王朋晓;程金文;达兴;;20世纪60年代以来黄土高原小流域泥沙来源的方法与历史侵蚀过程研究进展[J];江西农业学报;2016年04期
4 陈汉;张春;;坡耕地土壤侵蚀特征及危害性分析[J];农技服务;2015年10期
5 常维娜;周慧平;高燕;;基于复合指纹法的九乡河小流域泥沙来源解析[J];水土保持学报;2014年06期
6 李桂静;崔明;周金星;彭绍云;谢炎敏;;南方红壤区林下土壤侵蚀控制措施水土保持效益研究[J];水土保持学报;2014年05期
7 林敬兰;郑锦文;;南方红壤区崩岗侵蚀治理研究进展[J];亚热带水土保持;2014年03期
8 郭进;文安邦;严冬春;史忠林;;复合指纹识别技术定量示踪流域泥沙来源[J];农业工程学报;2014年02期
9 赵其国;黄国勤;马艳芹;;中国南方红壤生态系统面临的问题及对策[J];生态学报;2013年24期
10 聂小东;李忠武;王晓燕;申卫平;张雪;郭旺;马文明;王曙光;;雨强对红壤坡耕地泥沙流失及有机碳富集的影响规律研究[J];土壤学报;2013年05期
相关博士学位论文 前2条
1 陆建忠;遥感反演与数值模拟耦合的渤海悬浮泥沙输移研究[D];武汉大学;2010年
2 牛德奎;华南红壤丘陵区崩岗发育的环境背景与侵蚀机理研究[D];南京林业大学;2009年
相关硕士学位论文 前10条
1 梁双双;花岗岩崩岗崩壁不同层次土体溅蚀特征研究[D];福建农林大学;2016年
2 林盛;南方红壤区水土流失治理模式探索及效益评价[D];福建农林大学;2016年
3 姚毅臣;南方红壤区马尾松林下水土流失与降雨特性关系研究[D];江西农业大学;2012年
4 张旭斌;南方花岗岩区典型崩岗侵蚀泥沙来源研究[D];福建农林大学;2012年
5 徐义保;南方红壤丘陵区马尾松林下水土流失过程研究[D];福建师范大学;2012年
6 汪水前;基于“3S”技术的安溪县水土流失动态监测研究[D];福建农林大学;2009年
7 刘咪咪;东海悬沙浓度垂向分布规律研究[D];中国科学院研究生院(海洋研究所);2008年
8 陈志明;安溪县崩岗侵蚀现状分析与治理研究[D];福建农林大学;2007年
9 周家俞;挟沙水流泥沙颗粒悬浮规律的试验研究[D];武汉大学;2005年
10 林金堂;福建省林地针叶化及其对生态环境的影响[D];福建师范大学;2002年
,本文编号:1561701
本文链接:https://www.wllwen.com/kejilunwen/nykj/1561701.html