稻麦秸秆不同器官及不同部位产沼气特征研究
本文选题:麦秸 切入点:稻秸 出处:《南京农业大学》2015年硕士论文 论文类型:学位论文
【摘要】:秸秆是农作物收获后留下的固体残余物,包括作物茎秆、叶,麦子还包括zB壳、穗芒等。我国每年农业秸秆产量达7亿多吨,其中稻麦秸秆占近50%,是农业秸秆的最主要来源。农业秸秆的主要组分为木质纤维素,其资源化技术包括堆肥、饲料、工业原料、基料等等。近年来,随着农村清洁能源的短缺和秸秆处理问题的日趋突出,秸秆沼气化利用同时解决了以上两个问题,是秸秆资源化利用的重要途径之一。目前对秸秆沼气化利用的研究很多,但大多集中于原料预处理、发酵工艺优化等方面,对秸秆不同器官产量、理化特性及产气潜力以及地上部不同高度秸秆残体产气特性的研究还未见报道。这对指导秸秆收集方式有重要意义,如留茬高度、秸秆收集部位等。随着秸秆收集、粉碎或研磨、分离等技术进步,可以将秸秆分成不同部分,为充分发挥秸秆不同器官利用潜力,本文以稻麦秸秆为原料,研究了稻麦秸秆不同器官和地上部不同高度秸秆的理化特性、产量及厌氧发酵产气特性。按照zB壳、穗芒、茎、叶和秸秆地上部0-10cm、10-20cm、20-30cm、30cm的方式把三个品种小麦和水稻秸秆人工分成不同部分,测定各部位的TS、VS、C、N、有机质、冷水和热水抽出物含量、三素含量等。试验结果如下:三个不同品种小麦秸秆不同器官及不同部位的产气潜力结果如下:徐麦30不同器官中产气潜力最大部位为叶,TS产气量为341.2mL/g,平均甲烷体积分数为53.89%。不同高度的秸秆产气潜力存在显著差异,产气潜力最好的部位是地上部30cm的部分,TS产气量311.45mL/g,平均甲烷体积分数为58.06%。徐麦33不同器官中产气潜力最大部位是茎,TS产气量为386.63mL/g,平均甲烷体积分数为52.1%。不同高度的秸秆产气潜力最好的部位是地上部20-30cm部分,TS产气量为327.6mL/g,平均甲烷体积分数为54.38%。保麦1082不同器官中产气潜力最大部位为茎,TS产气量364.25mL/g,平均甲烷分数为56.03%。不同高度的秸秆产气潜力最好的部位是10-20cm高度,TS产气量为334.58mL/g,平均甲烷百分数为57.37%。3种小麦秸秆不同器官最大产气潜力值间无明显差异,徐麦33的茎比徐麦30的叶高13.31%,比保麦1082的茎高6.14%。3个品种小麦秸秆不同高度产气潜力的最大值间无明显差异。3个品种水稻秸秆不同器官产沼气潜力的结果如下:按器官分,水稻秸秆茎的产气潜力最大,其中南粳44、南粳45、扬稻6号TS产气量分别为325.87mL/g、322.7mL/g、345.9mL/g,平均甲烷体积分数分别为62.6%、63.2%、62.5%。稻秸不同高度产气的结果显示,南粳44地上30cm以上部分的秸秆产气潜力最大,TS产气量为322.1mL/g,平均甲烷体积分数为54.9%。南粳45地上部10-20cm部位的产气潜力最大,TS产气量为268.2mL/g,平均甲烷体积分数为60.76%。扬稻6号地上部20-30cm部位的产气潜力最大,TS产气量为319.5mL/g,平均甲烷体积分数为61.47%。各水稻品种中,茎、叶产气量差别明显,不同高度的秸秆产气潜力差异显著。不同品种水稻的茎的产气潜力差异不大。水稻茎、叶器官的最大产气潜力低于小麦。将不同组织器官秸杆产气潜力与其化学组成做相关分析,结果发现产气潜力大的部位其对应的有机质含量也较高,三素中满足其中至少一种状况:纤维素含量最高或较高,半纤维素含量最高或较高,抑或木质素含量最低或较低。
[Abstract]:Straw is a solid residue left after harvesting crops, including crop stalk, leaf, wheat also includes zB shell, panicle awn. China's annual agricultural straw production reached more than 700 million tons, which accounted for nearly 50% of rice and wheat straw, is the main source of agricultural straw. The main agricultural straw into the lignocellulose. Resource technology including composting, feed, industrial raw materials, base material and so on. In recent years, with the shortage and straw processing of renewable energy in rural areas have become increasingly prominent, straw biogas utilization and solves the above two problems, is one of the important ways of straw resource utilization. The research on straw biogas utilization of many. But most of them are focused on the pretreatment of raw materials, fermentation process optimization of different organs, yield of straw on the upper part of the physicochemical characteristics and potential gas production and different height of straw residue gas production characteristics of this has not been reported. There is an important guiding significance of straw collection methods, such as stubble height, straw collection site. With the straw collection, crushing or grinding, separation technology, can be divided into different parts of straw, straw to make full use of different organs use potential, taking wheat straw as raw material, studied the physicochemical properties of rice and wheat straw organ and shoot height of different straw, biogas production yield and anaerobic fermentation characteristics. In accordance with the zB shell, panicle awn, stem, leaf and stalk of upper 0-10cm, 10-20cm, 20-30cm, 30cm, the three varieties of wheat and rice straw was divided into different parts, each part of the determination of TS, VS, C. N, organic matter, cold water and hot water extractives, three content. The results are as follows: three different varieties of wheat straw in different organs and different parts of the potential gas production results are as follows: xumai 30 middle gas potential in different organs of the largest position for the leaf, TS The gas is 341.2mL/g, the average volume fraction of methane as the significant difference between straw biogas potential 53.89%. of different height, the potential gas production site is the best part of the 30cm, the TS 311.45mL/g gas production, the average methane volume fraction of 58.06%. in different organs of xumai 33 middle gas potential is the largest part of the stem, TS gas production was 386.63mL/g the average volume fraction of methane, straw gas production potential of 52.1%. with different height is the best part of the 20-30cm part, TS gas production is 327.6mL/g, the average volume fraction of methane is 54.38%. Baomai 1082 different organs of middle gas potential of the largest part of stem, TS 364.25mL/g gas production, the average methane fraction of straw gas potential of different height 56.03%. the best part is the height of 10-20cm, TS gas production is 334.58mL/g, the average methane percentage 57.37%.3 of wheat straw in different organs of maximum potential gas production value of no significant difference ISO, xumai 33 xumai 30 leaf stem ratio is 13.31% higher than the 1082 Baomai, different varieties of wheat straw stem high 6.14%.3 high gas potential maximum no obvious difference between.3 varieties in different organs of rice straw biogas production potential results are as follows: according to the organ, the maximum gas production of rice straw stem one potential, Nanjing 44, Nanjing 45 and Yangdao 6 TS gas production were 325.87mL/g, 322.7mL/g, 345.9mL/g, the average volume fraction of methane was 62.6% and 63.2% respectively, the 62.5%. of rice straw with different height of gas production results show that the maximum 30cm part of the straw gas potential Nanjing 44 floor, TS the gas is 322.1mL/g, the average volume fraction of methane to the maximum 54.9%. Nanjing 45 10-20cm above ground parts of the potential gas production, gas production of TS is 268.2mL/g, the average volume fraction of methane to the maximum 60.76%. Yangdao 6 shoot 20-30cm parts of the potential gas production, TS gas production capacity of 319.5mL/g, flat All the methane volume fraction is 61.47%. rice, stem, leaf production rate differences, different height of the straw gas potential significantly. Potential gas production in different cultivars of rice stem. Rice stems, leaf maximum potential gas production was lower than that of wheat. The different organs of straw and chemical potential gas production which do correlation analysis results showed that the content of organic matter and its corresponding gas production potential of the site is also high, three elements meet at least one condition: the highest content of cellulose or hemicellulose content is higher, the highest or higher, or the lowest lignin content or lower.
【学位授予单位】:南京农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X712;S216.4
【参考文献】
相关期刊论文 前10条
1 叶小梅;常志州;钱玉婷;潘君才;朱谨;;江苏省大中型沼气工程调查及沼液生物学特性研究[J];农业工程学报;2012年06期
2 ;《“十二五”农作物秸秆综合利用实施方案》出台[J];造纸信息;2012年03期
3 万忠东;;生物质能利用发展方向探讨[J];能源与节能;2011年07期
4 顾克军;杨四军;张斯梅;许博;陈涓;张恒敢;;不同生产条件下留茬高度对水稻秸秆可收集量的影响[J];中国生态农业学报;2011年04期
5 赵玲;刘庆玉;牛卫生;胡艳清;;沼气工程发展现状与问题探讨[J];农机化研究;2011年04期
6 白娜;梅自力;符征鸽;孔垂雪;杨浩;;三种秸秆在不同温度下发酵产气特性研究[J];中国沼气;2011年01期
7 楚莉莉;冯永忠;李轶冰;杨改河;任广鑫;;不同配比猪粪、小麦秸秆混合厌氧发酵产气特性研究[J];西北农林科技大学学报(自然科学版);2011年02期
8 罗艳;陈广银;罗兴章;郑正;邹星星;王卫平;;互花米草不同部位厌氧发酵特性[J];环境化学;2010年05期
9 王璐;肖健;;农作物秸秆利用技术现状及发展对策[J];安徽农学通报(上半月刊);2010年15期
10 陈广银;郑正;方彩霞;罗艳;邹星星;;压滤处理对水葫芦不同部位厌氧发酵的影响[J];环境化学;2010年03期
相关硕士学位论文 前5条
1 井良霄;干青玉米秸秆厌氧发酵特性与优化工艺研究[D];西北农林科技大学;2013年
2 王新锋;玉米秸秆不同部位低浓度厌氧发酵特性研究[D];河南农业大学;2013年
3 李芳;混合原料厌氧发酵工艺的响应面优化研究[D];西北农林科技大学;2013年
4 邵明胜;水稻秸秆厌氧发酵产沼气工艺条件的研究[D];湖北工业大学;2009年
5 任佐华;多菌种混合发酵水稻秸秆的研究[D];湖南农业大学;2006年
,本文编号:1589031
本文链接:https://www.wllwen.com/kejilunwen/nykj/1589031.html