磷添加和非农植物多样性对土壤线虫群落的影响
本文选题:土壤线虫 + 施肥 ; 参考:《河南大学》2015年硕士论文
【摘要】:随着我国人口不断的增加和人们对粮食的需求越来越大,提高土壤肥力和防治农田杂草是增加农作物产量至关重要途径。磷肥是农作物生长的必要元素之一,近年来农田磷肥施用量迅速增加。因此,施磷肥和除草引起的植物多样性下降对土壤健康的影响,成为生态学研究的重要课题。土壤线虫作为土壤中数量和物种多样性最多的无脊椎动物之一,是土壤生物群落重要组成部分,而且线虫动物区系能够对生物进程提供独特的评价。因此,线虫被认为是鉴定土壤质量的指示生物。本研究采用盆栽模拟实验,设施肥和非农植物多样性双因素处理。磷肥作为第一个因子,分为不施磷肥(P-)和添加磷肥(P+),每个施肥处理设36个重复;非农植物多样性作为第二个因子,处理分为4个部分,包括无非农植物(NW),1种非农植物(OW),2种非农植物(TW)和4种非农植物(FW)共4个处理。于冬小麦孕穗期取样,土壤线虫采用贝尔曼湿漏斗法提取,鉴定到属。基于土壤线虫的多度、丰度、营养类群、功能团指数、生态指数以及线虫动物区系分析数据,用来评估磷添加和非农植物多样性对冬小麦孕穗期土壤线虫群落构成的影响及作用机制,阐明磷添加和非农植物多样性下土壤线虫群落结构的趋势变化。得出以下主要结果:1、群落构成:冬小麦孕穗期,共分离鉴定28592头线虫,2个纲,7个目,16个科,30个属,其中食细菌线虫13417头、11个属,食真菌线虫1680头、2个属,植食性线虫11128头、10个属,杂捕性线虫2364头、7个属,优势类群为小杆属(18%)、短体属(17%)和矮化属(10%)。磷添加和非农植物多样性处理中,P+多度值大于P-,在P+种植TW非农植物和P-种植NW非农植物时线虫多度值最高。P添加土壤线虫总多度(F=12.513,P=0.001)显著增加,总丰度(F=14.837,P=0.000)显著增加,P+对比P-处理中,多度增幅为0.574;丰度增加值为2.167;非农植物多样性土壤线虫总多度(F=0.273,P=0.845)和总丰度(F=2.346,P=0.081)均没有出现显著性。P添加和非农植物多样性交互土壤线虫总多度(F=0.210,P=0.889)和总丰度(F=1.325,P=0.274)均没表现出显著性。2、生态参数:P+的处理中,线虫生态指数杂比植、香农多样性指数、均匀度指数、丰富度指数、自由生活线虫成熟度指数的值均随非农植物多样性的增加而增高,且种植NW和FW非农植物时,香农多样性指数、均匀度指数出现显著性差异。P-处理中,线虫生态指数杂比植、香农多样性指数、丰富度指数、自由生活线虫成熟度指数,相对于其它3种非农植物多样性的处理中,种植TW非农植物的值最高,且丰富度指数出现了显著性差异。双因素方差分析表明,线虫总数和营养类群中食细菌线虫多度、植食性线虫多度以及功能团指数中Ba1、Fu2、Pp5、OP5在施肥处理作用中均有显著性,但P+和非农植物多样性交互方差分析中均没有出现显著性。线虫区系分析结果表明,P+处理和非农植物多样性交互下富集指数和结构指数均在50-100之间变化,位于B象限,表明该土壤中所含养分量较高,并且受到外界干扰程度较小,表明食物网处于稳定成熟阶段。3、土壤理化性质与土壤线虫相关、回归分析结果显示:土壤有机碳与线虫总数(R2=0.293,P0.001)、食细菌线虫多度(R2=0.259,P0.001)、植食性线虫多度(R2=0.272,P0.001)、植食性功能团cp=5的值(R2=0.259,P0.001)、富集指数(R2=0.134,P0.001)均显著正相关;但与自由生活线虫成熟度指数(R2=0.159,P0.001)、通道指数(R2=0.130,P0.001)呈显著负相关。速效磷与线虫总数(R2=0.180,P0.001)、食细菌线虫多度(R2=0.222,P0.001)、植食性线虫多度(R2=0.148,P0.001)、富集指数(R2=0.151,P0.001)均呈显著正相关;与总线虫丰度(R2=0.122,P0.05)、自由生活线虫成熟度指数(R2=0.152,P0.001)、结构指数(R2=0.122,P0.05)、通道指数(R2=0.155,P0.001)呈显著负相关。铵态氮与结构指数(R2=0.087,P0.05)、通道指数(R2=0.130,P0.05)呈显著正相关;但与线虫总数(R2=0.145,P0.05)、食细菌线虫多度(R2=0.167,P0.001)、植食性线虫多度(R2=0.125,P0.05)、总线虫丰度(R2=0.160,P0.001)、均匀度指数(R2=0.041,P0.05)、富集指数(R2=0.153,P0.001)均显著负相关。综上所述,施磷肥能增加土壤养分和土壤线虫多度,改变土壤线虫对有机质分解途径,减少稀有种类。通过增加非农植物多样性能够减缓施肥对土壤线虫群落的负面效应,提高了食物网的复杂程度。实验结果能够为农田施肥和除草措施制定、农田生物多样性保护和农田土壤健康发展提理论基础。
[Abstract]:With the increasing population of our country and the increasing demand for grain, improving soil fertility and controlling weeds is an important way to increase crop yield. Phosphate fertilizer is one of the essential elements of crop growth. In recent years, the amount of phosphate fertilizer applied in farmland has increased rapidly. Therefore, the plant diversity caused by phosphate fertilizer and weed removal has decreased. Soil nematode, one of the most important species of invertebrates in soil and species diversity, is an important part of the soil community, and the nematode fauna can provide a unique assessment of biological processes. Indicator organisms. This study uses a potted plant simulation experiment, a dual factor treatment of plant fertilizer and non-agricultural plant diversity. As the first factor, phosphate fertilizer is divided into no phosphate fertilizer (P-) and phosphate fertilizer (P+), each fertilization treatment is set up 36 repetitions; non agricultural plant diversity is divided into 4 parts, including no non - non - non - agricultural plant (NW), and 1 kinds of non - agricultural plants. 2 nonagricultural plants (OW), 2 nonagricultural plants (TW) and 4 non-agricultural plants (FW) were treated. The soil nematode was extracted by Behrman wet leakage method and identified in the booting stage of winter wheat. The influence and mechanism of agro plant diversity on the composition of soil nematode community at the booting stage of winter wheat, and clarified the trend of soil nematode community structure under the addition of phosphorus and non agro plant diversity. The following main results were as follows: 1, the community composition: 28592 nematodes, 2 classes, 7 orders, 16 families and 30 genera were isolated and identified in the booting stage of winter wheat. 13417 heads, 11 genera, 1680 heads and 2 genera of nematode, 11128, 10, 2364, 7 genus of phytophagous nematodes, the dominant group of 7 genera, the dominant group of small genus (18%), the short body (17%) and the dwarf (10%). The P+ value is greater than the P-, and the TW non-agricultural plants and the P- plant NW non-agricultural plants in P+. The highest.P added to the nematode abundance (F=12.513, P=0.001) increased significantly, and the total abundance (F=14.837, P=0.000) increased significantly. In the P+ contrast P- treatment, the increase was 0.574 and the abundance was 2.167; the total abundance (F=0.273, P=0.845) and the total abundance (F=2.346, P=0.081) of the non-agricultural diversity soil nematodes were not present. The total abundance (F=0.210, P=0.889) and total abundance (F=1.325, P=0.274) of the significant.P addition and non agricultural intercourse nematode diversity (F=1.325, P=0.274) did not show significant.2. The ecological parameters: the ecological index heterozygosity of the nematode, the Shannon diversity index, the evenness index, the richness index, and the value of the maturity index of free living nematode all follow the non The increase of agricultural plant diversity increased, and when NW and FW non-agricultural plants were planted, the Shannon diversity index and the evenness index showed significant difference in.P- treatment, the nematode ecological index heterozygosity, the Shannon diversity index, the richness index, the free living nematode maturity index, compared with the other 3 non-agricultural plant diversity. The value of TW non-agricultural plants was the highest and the richness index showed significant differences. Two factor variance analysis showed that the number of nematodes, the abundance of nematode eating nematodes, the abundance of herbivorous nematodes, and the Ba1, Fu2, Pp5, and OP5 in the functional group index were significant in the fertilization treatment, but the diversity intercourse variance analysis between P+ and non-agricultural plants was analyzed. The results showed that the mutual enrichment index and structure index of P+ treatment and non agricultural intercourse varied between 50-100 and B quadrants, indicating that the nutrient components in the soil were higher and were less disturbed by the outside world, indicating that the food network was in a stable and mature stage of.3 and soil physicochemical. The properties of soil nematode were related to soil nematode. The results of regression analysis showed that soil organic carbon and total R2=0.293 (P0.001), R2=0.259 (P0.001), R2=0.272, P0.001, R2=0.259, P0.001 (R2=0.134, P0.001) were both significant positive correlation, but with free living nematodes, but with free living nematodes. The R2=0.159 (P0.001) and the R2=0.130 (P0.001) showed significant negative correlation. The available phosphorus and the total number of nematodes (R2=0.180, P0.001), the abundance of the nematode eating nematode (R2=0.222, P0.001), the abundance of herbivorous nematodes (R2=0.148, P0.001), and the enrichment index (R2=0.151, P0.001) were all significant positive correlation. The nematode maturity index (R2=0.152, P0.001), structure index (R2=0.122, P0.05), channel index (R2=0.155, P0.001) showed significant negative correlation. The ammonium nitrogen and structural index (R2=0.087, P0.05), channel index (R2=0.130, P0.05) showed significant positive correlation, but with the total number of nematodes (R2=0.145, P0.05), bacterial nematode abundance, and phytophagous nematode abundance. (R2=0.125, P0.05), R2=0.160 (P0.001), evenness index (R2=0.041, P0.05), enrichment index (R2=0.153, P0.001) are all significantly negative correlation. In summary, phosphate fertilizer can increase soil nutrients and soil nematode abundance, change soil nematode to the organic decomposition pathway, reduce rare species. By increasing non-agricultural diversity can be reduced. The negative effects of slow fertilization on soil nematode community increased the complexity of the food network. The experimental results could provide a theoretical basis for farmland fertilization and weed control measures, the conservation of farmland biodiversity and the healthy development of farmland soil.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S154.386
【相似文献】
相关期刊论文 前10条
1 华建峰;姜勇;梁文举;;植被覆盖对土壤线虫营养类群空间分布的影响[J];应用生态学报;2006年02期
2 吴东辉;张柏;陈鹏;;长春市不同土地利用生境的土壤线虫群落结构特征[J];应用生态学报;2006年03期
3 毛小芳;胡锋;陈小云;Griffiths Bryan;李辉信;;土壤食细菌线虫的原位富集培养方法[J];生态学报;2007年02期
4 邵元虎;傅声雷;;试论土壤线虫多样性在生态系统中的作用[J];生物多样性;2007年02期
5 阮维斌;吴建波;张欣;李晶;许华;赵念席;陈磊;段玉玺;陈立洁;高玉葆;;内蒙古中东部大针茅群落土壤线虫多样性研究[J];应用与环境生物学报;2007年03期
6 周际海;陶军;陈小云;胡锋;李辉信;;安徽农药厂厂区及周边农田土壤线虫数量特征[J];生物多样性;2008年06期
7 刘艳军;张喜林;高中超;刘颖;马星竹;周宝库;;长期施肥对土壤线虫群落结构的影响[J];中国农学通报;2011年21期
8 刘贝贝;叶成龙;虞丽;焦加国;刘满强;胡锋;李辉信;;不同植被类型的滩涂湿地土壤线虫群落特征[J];应用生态学报;2012年11期
9 林琳;王琳;张雪萍;李景科;;不同施肥处理方式下土壤线虫群落结构的研究[J];国土与自然资源研究;2013年03期
10 韩志泉;;土壤线虫与人类关系[J];生物学通报;1992年09期
相关会议论文 前3条
1 梁文举;李琪;姜勇;;农田土壤线虫多样性研究进展[A];中国生态学会2006学术年会论文荟萃[C];2006年
2 吴纪华;陈慧丽;;外来植物互花米草对土壤线虫群落的影响及其机制[A];第四次全国土壤生物和生物化学学术研讨会论文集[C];2007年
3 陈国康;陈让;朱致豫;肖崇刚;;重庆烟草根际土壤线虫及其群落结构的调查分析[A];中国植物病理学会2012年学术年会论文集[C];2012年
相关博士学位论文 前7条
1 胡靖;青藏高原东缘高寒草甸土壤线虫群落对施肥和放牧的响应研究[D];兰州大学;2015年
2 李玉娟;云南哀牢山土壤线虫对植物群落改变及地上/地下资源输入的响应[D];复旦大学;2008年
3 李辉信;土壤线虫对养分循环和作物生长的影响及机理[D];南京农业大学;1998年
4 刘艳斌;南疆果粮间作系统土壤线虫群落结构特征及与土壤食物网的关系[D];中国农业大学;2015年
5 侯雪坤;不同耕作方式下土壤耕层理化性状和生物学特性时空分布研究[D];黑龙江八一农垦大学;2011年
6 董锡文;科尔沁沙地沙丘植物恢复进程中土壤肥力变化及线虫群落空间分布特征研究[D];沈阳农业大学;2010年
7 支德娟;沙坡头人工固沙区线虫群落对其栖居环境指示作用研究[D];兰州大学;2009年
相关硕士学位论文 前10条
1 刘志典;土壤线虫培养方法与毒性试验研究[D];沈阳大学;2013年
2 王静;施肥对青藏高原东部高寒草甸土壤线虫群落组成的影响[D];兰州大学;2015年
3 李乌日吉木斯;不同放牧强度对典型草原土壤线虫群落的影响[D];内蒙古农业大学;2015年
4 李懋;田间模拟条件下气候变化对农田土壤线虫群落结构和酶活性的影响[D];南京农业大学;2014年
5 陈思宇;磷添加和非农植物多样性对土壤线虫群落的影响[D];河南大学;2015年
6 凌斌;云南省高黎贡山土壤线虫群落结构及多样性研究[D];湖南农业大学;2008年
7 宝音温都苏;不同种植模式下苜蓿地土壤线虫群落结构的变化[D];内蒙古农业大学;2012年
8 刘贝贝;江苏省几种不同土地利用方式下土壤线虫的群落特征研究[D];南京农业大学;2012年
9 谷旭;辽东半岛海岸带不同植被类型中土壤线虫群落特征[D];辽宁师范大学;2013年
10 王可洪;三江平原湿地垦殖过程中农药对土壤线虫多样性的影响[D];中国科学院研究生院(东北地理与农业生态研究所);2014年
,本文编号:1818631
本文链接:https://www.wllwen.com/kejilunwen/nykj/1818631.html