温室番茄配施氮肥和双氰胺对氮淋失及氧化亚氮排放和氨挥发的影响
本文选题:温室番茄 + 氮肥 ; 参考:《河北农业大学》2015年硕士论文
【摘要】:目前,温室菜田过量施氮普遍,导致氮淋失、氧化亚氮排放和氨挥发污染严重,但温室番茄施氮损失和污染生化控制的研究较少。本研究采用田间调查与微区试验相结合的方法,以施肥量较高的温室番茄菜田为研究对象,不仅调查了温室番茄土壤理化性质变化规律和温室番茄常规施肥氮素淋失情况,还深入研究了不同施氮和双氰胺处理下,氧化亚氮排放、氨挥发以及0-100 cm不同层次土体硝态氮分布的变化规律,为减施氮肥增效和防控施肥污染提供科学依据。主要结果与特色创新如下:1.本研究首先调查了该地区温室番茄土壤理化性质,结果发现,该地区温室番茄主要养分指标和年限有一定的相关关系。其中,0-20 cm表层土壤有机质和氮、磷、钾养分随种植年限延长有不同的累积趋势,在棚龄为1-9年期间有机质年均增加0.19%、碱解氮年均增加22.3 mg/kg,速效磷年均增加17.46 mg/kg,速效钾年均增加167 mg/kg;碱解氮含量范围为112-311 mg/kg,土壤速效磷含量为3.7-290 mg/kg。土壤p H值随种植年限的延长呈先下降后上升的趋势,在棚龄为1-7年期间平均每年下降0.17,在棚龄为7-22年期间平均每年升高0.07,最高达8.5,最低为7.4;温室番茄土壤的EC值平均为0.556 m S/cm,温室外空地的平均值为0.199 m S/cm,温室内是室外的2.8倍,这说明温室内土壤有盐渍化的趋势;表层土壤有效态铁、锰、铜、锌含量均有不同程度的累积现象,且有效铁、铜、锌的平均含量分别超出河北省温室菜地地力指标中所规定的丰富值0.65,3.3,3.8倍。2.番茄种植区常规施肥情况跟踪调查表明,平均施氮量(N)为900 kg/hm2,施磷量(P2O5)为1020 kg/hm2,施钾量(K2O)为1300 kg/hm2,其中化肥氮,磷,钾占总养分的比例分别为40.1%、25.2%、35.2%;在该施肥条件下,番茄温室土壤硝态氮淋失量为37.9-212 kg/hm2,平均为139 kg/hm2,氮素最大淋失量占最大氮素总投入量的20%,氮素平均淋失量占氮素平均总投入量的15.4%。3.通过田间微区试验,研究了氮肥与硝化抑制剂双氰胺配施对温室番茄土壤氮淋失、氧化亚氮排放和氨挥发的影响。番茄温室土壤淋溶液中硝态氮占总氮的96%以上,占绝对优势。这说明番茄温室菜田土壤氮素淋失主要是土壤硝态氮的淋失。N2,N2+DCD处理土壤硝态氮淋失量比N1,N1+DCD处理硝态氮淋失量分别减少1.49%、44.3%,且推荐施氮配施DCD(N2+DCD)处理与常规施氮(N1)处理相比土壤氮素淋失降低了47.8%。这说明推荐氮肥用量可减少温室番茄土壤中硝态氮的淋溶。番茄收获后1 m土体中残留硝态氮的结果显示,N1+DCD的硝态氮累积量比N1的硝态氮累积量要低14.1%,对推荐氮肥处理(N2、N2+DCD)的硝态氮累积量进行比较,可以看出N2+DCD比N2要低15.8%,这表明,在施氮量相同的情况下,用DCD代替15%的纯氮可以在一定程度上降低硝态氮的累积量。推荐施氮配施DCD(N2+DCD)处理较常规施氮(N1)处理1 m土体硝态氮的累积降低了37.6%。N1+DCD、N2+DCD处理与N1、N2处理相比,番茄产量分别增加20.2%和2.37%,氨挥发累积排放量分别降低16.16%和21.68%,氧化亚氮累计排放量分别降低44.42%和77.62,推荐施氮配施DCD处理在保持番茄稳产的同时,显著降低土壤N2O排放与氨挥发损失。综合评价可知,在温室番茄种植过程中,氮素用量减半且配施DCD(施氮量的15%用DCD替代)的处理(300 kg/hm2+15%DCD),较常规施氮(600 kg/hm2)处理1 m土体硝态氮的累积降低了37.6%,土壤氮素淋失降低了47.8%,土壤N2O累积排放量降低了93.0%,氨挥发累积量减少47.3%,节本增效1.54万元/hm2,实现了经济与环境效益的双赢。
[Abstract]:At present, excessive nitrogen application in greenhouse vegetable fields is common, which causes nitrogen leaching, Nitrous Oxide emission and ammonia volatilization are serious, but there are few studies on the loss of nitrogen and pollution biochemical control in greenhouse tomatoes. The change regularity of physicochemical properties of tomato soil and nitrogen leaching of conventional fertilization in greenhouse tomato, and the changes of nitrate distribution in different layers of soil under different nitrogen and dicyandiamide treatments, Nitrous Oxide emission, ammonia volatilization and 0-100 cm different levels of soil nitrate nitrogen distribution were studied. The main results were the main results for reducing nitrogen fertilizer efficiency and preventing and controlling fertilizer pollution. The following characteristics are as follows: 1. this study first investigated the physical and chemical properties of greenhouse tomato soil in this area. The results showed that there was a certain correlation between the main nutrient indexes and years of greenhouse tomatoes in this area. Among them, the organic matter and nitrogen, phosphorus and potassium nutrients in the 0-20 cm surface soil have different cumulative trend with the annual limit of planting, and in the period of 1-9 years of greenhouse age. The annual increase of organic matter is 0.19%, the annual average increase of alkali hydrolysable nitrogen by 22.3 mg/kg, the annual increase of available phosphorus by 17.46 mg/kg, the increase of available potassium by 167 mg/kg, the range of alkali hydrolysable nitrogen is 112-311 mg/kg, and the content of soil available phosphorus is 3.7-290 mg/kg. soil P H value rising first and then increasing with the prolongation of planting years, and the average per year in the shelf age of 1-7 years. The annual decrease of 0.17, the average annual increase of 0.07, the maximum of 8.5, and the minimum of 7.4, the EC value of greenhouse tomato soil is 0.556 m S/cm, the average value of the outer space in the greenhouse is 0.199 m S/cm, and the greenhouse is 2.8 times in the greenhouse, which indicates that the soil in the greenhouse is salty, and the soil available iron, manganese, copper and zinc in the surface soil are all There were different degrees of accumulation, and the average content of the effective iron, copper and zinc exceeded the regular fertilization in the 0.65,3.3,3.8.2. tomato planting area of Hebei province. The average nitrogen rate (N) was 900 kg/hm2, the amount of phosphorus (P2O5) was 1020 kg/hm2, and the amount of potassium fertilizer (K2O) was 1300 kg/hm2, The proportion of nitrogen, phosphorus and potassium in the total fertilizer was 40.1%, 25.2%, 35.2%, respectively. Under this condition, the nitrate leaching loss of tomato greenhouse soil was 37.9-212 kg/hm2, average 139 kg/hm2, the maximum nitrogen leaching loss accounted for 20% of the maximum nitrogen total input, and the average nitrogen loss of nitrogen accounted for the average total input of nitrogen in the field micro area. The effects of nitrogen fertilizer and nitrification inhibitor dicyandiamide on soil nitrogen leaching, Nitrous Oxide emission and ammonia volatilization in Greenhouse Tomato soil were studied. In tomato greenhouse soil spray, nitrate nitrogen accounted for more than 96% of total nitrogen, which accounted for the main advantage of soil nitrogen leaching loss of tomato greenhouse vegetable field was.N2, N2+DCD treatment of soil nitrate nitrogen. The leaching loss of soil nitrate nitrogen was less than that of N1 and N1+DCD treatment by 1.49%, 44.3% respectively, and the recommended nitrogen application DCD (N2+DCD) treatment and conventional nitrogen (N1) treatment decreased the soil nitrogen leaching loss 47.8%.. This suggested that the recommended nitrogen fertilizer amount could reduce the leaching of nitrate nitrogen in Greenhouse tomato soil. Residual nitrate in 1 m soil after tomato harvest. The results of state nitrogen show that the accumulation of nitrate nitrogen in N1+DCD is 14.1% lower than that of N1. The comparison of nitrate accumulation in the recommended nitrogen treatment (N2, N2+DCD) can be seen that N2+DCD is 15.8% lower than N2. This shows that, under the same nitrogen application condition, the use of DCD instead of 15% can reduce the nitrate nitrogen to a certain extent. Compared with conventional nitrogen (N1) treatment, the accumulation of nitrate nitrogen in 1 m soil was reduced by 37.6%.N1+DCD. Compared with N1, N2 treatment, the yield of tomato increased by 20.2% and 2.37%, and the cumulative emission of ammonia volatilization decreased by 16.16% and 21.68% respectively, and the cumulative emission of Nitrous Oxide decreased by 44.42% and 77.62, respectively, and recommended by the recommended application of nitrogen application (N1). Nitrogen application and DCD treatment could reduce soil N2O emission and ammonia volatilization loss significantly while maintaining tomato stable yield. Comprehensive evaluation showed that in greenhouse tomato planting process, the amount of nitrogen was reduced by half and treated with DCD (300 kg/hm2+15%DCD) with DCD (300 kg/hm2+15%DCD), and the cumulative drop of nitrate nitrogen in 1 m soil was compared with conventional nitrogen application (600 kg/hm2). As low as 37.6%, soil nitrogen leaching loss was reduced by 47.8%, the cumulative emission of soil N2O was reduced by 93%, the accumulation of ammonia was reduced by 47.3%, and the cost increased by 15 thousand and 400 yuan /hm2, which realized the win-win of economic and environmental benefits.
【学位授予单位】:河北农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X712
【相似文献】
相关期刊论文 前3条
1 宋晓彤;;分类防治温室番茄病虫害[J];农药市场信息;2004年01期
2 孙茜;马广源;;番茄保暖时别忘了防病[J];农药市场信息;2011年29期
3 ;[J];;年期
相关会议论文 前6条
1 陈双臣;邹志荣;贺超兴;刘志勇;;温室番茄长季节生产专家系统的研制[A];2004年中国设施园艺学会学术年会文集[C];2004年
2 褚金翔;贾倩;杜克明;孙忠富;刘爽;;利用模型对我国温室番茄的光合生产潜力进行空间分析[A];2008园艺学进展(第八辑)——中国园艺学会第八届青年学术讨论会暨现代园艺论坛论文集[C];2008年
3 陈新明;蔡焕杰;王燕;单志杰;;局部控水无压灌溉方式对温室番茄生理特性调控效应[A];现代节水高效农业与生态灌区建设(上)[C];2010年
4 郭荣王;雪芳;曹阳;李灵芝;;温室番茄氮肥高效利用率研究[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年
5 汪洋;田军仓;李建设;;非耕地温室番茄微咸水净化灌溉试验研究[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年
6 王伟珍;刘春红;张漫;李民赞;刘刚;;基于BP神经网络的温室番茄光合作用速率预测模型研究[A];中国农业工程学会2011年学术年会论文集[C];2011年
相关重要报纸文章 前10条
1 洪慧;温室番茄用温水浇灌巧防空心[N];农民日报;2009年
2 周建豪;北美温室番茄逐渐形成市场主要力量[N];农民日报;2010年
3 刘沪丽;温室番茄 增施菌肥防早衰[N];农资导报;2013年
4 冯桂文;怎样防止温室番茄徒长[N];农民日报;2013年
5 高阳县农牧局 齐悦然;温室番茄蘸花有讲究[N];河北科技报;2006年
6 俏丽;温室番茄整枝八注意[N];河南科技报;2005年
7 双姗;温室番茄死棵难题咋解决?[N];山东科技报;2007年
8 定州市农牧局蔬菜站 王磊;温室番茄裂果的原因及防治[N];河北科技报;2009年
9 李登顺;温室番茄管理要诀[N];山西科技报;2001年
10 ;温室番茄头茬至三茬果的管理[N];新疆科技报(汉);2008年
相关博士学位论文 前6条
1 褚金翔;温室番茄生长发育模型建立与参数实验研究[D];中国农业科学院;2008年
2 倪纪恒;温室番茄生长发育模拟模型研究[D];南京农业大学;2005年
3 刘浩;温室番茄需水规律与优质高效灌溉指标研究[D];中国农业科学院;2010年
4 侯加林;温室番茄生长发育模拟模型的研究[D];中国农业大学;2005年
5 肖深根;温室番茄干物质优化分配与苗期生长模拟研究[D];湖南农业大学;2004年
6 王军;温室番茄和苦苣变温控湿节能效应研究[D];西北农林科技大学;2012年
相关硕士学位论文 前10条
1 李玉涛;温室番茄配施氮肥和双氰胺对氮淋失及氧化亚氮排放和氨挥发的影响[D];河北农业大学;2015年
2 陈平;石羊河流域温室番茄节水调质及优化灌溉制度试验研究[D];西北农林科技大学;2009年
3 卢泽华;不同方式加气灌溉对温室番茄生长及产量的影响[D];西北农林科技大学;2012年
4 陈人杰;温室番茄生长发育动态模拟系统[D];中国农业科学院;2002年
5 尹学举;温室番茄环境调控决策支持系统[D];江苏大学;2002年
6 姚勇哲;温室番茄耗水模型的模拟与验证[D];西北农林科技大学;2012年
7 谢景欢;沼渣利用下温室番茄及土壤环境对水氮耦合的响应[D];华中农业大学;2010年
8 李爱卓;秦王川灌区日光温室番茄自压微水头软管微孔灌膜下调亏灌溉研究[D];甘肃农业大学;2009年
9 弓志青;温室温度与番茄生长、生产关系的分析[D];山西农业大学;2003年
10 雷庭;温室番茄病虫管理中的人力资本效用研究[D];西北农林科技大学;2013年
,本文编号:1857482
本文链接:https://www.wllwen.com/kejilunwen/nykj/1857482.html