当前位置:主页 > 科技论文 > 农业技术论文 >

基于玉米冠层结构特点的遥感监测模型研究

发布时间:2018-05-13 00:18

  本文选题:春玉米 + 密度 ; 参考:《石河子大学》2017年硕士论文


【摘要】:【目的】通过分析新疆地区不同密度下春玉米冠层结构特征,冠层叶面积指数、产量与冠层高光谱相关关系,建立不同密度下春玉米冠层叶面积指数和产量的高光谱估算模型,为新疆地区春玉米长势和产量估算提供依据。【方法】在新疆不同春玉米品种、不同密度水平条件下开展大田试验,测定了冠层光谱反射率、叶面积指数、分层叶面积、生物产量、株高、穗位、经济产量等数据,分析在不同密度下累积叶面积指数、相对叶面积密度、生物产量、经济产量与高光谱的相关性,建立了叶面积指数、相对叶面积密度、生物产量、经济产量的相关模型并进行模型精度的检验。【结果】通过开展试验研究,得到如下结果:(1)随着密度的增大,玉米最长和最宽叶片叶位保持大致不变,叶宽随着密度的增大而显著减小,叶长随着密度的增大先增大后减少;单株叶面积减小,基部叶片(1-6叶)叶面积变化不大,下部叶片(7-12叶)叶面积先增大后减小,中部叶片(13-16叶)不同年际间表现出不同差异,上部叶片(17叶及以上)叶面积逐渐减小;群体叶面积增加,中部及上部相对叶面积差异较大;茎干重差异较大,叶干重差异较小。在D3密度下,经济产量与穗位高、相对叶面积密度呈正相关,与生物产量呈现负相关,显著性均少于0.05。(2)不同密度下,春玉米叶面积指数和相对叶面积密度的估算模型不同。叶面积指数的高光谱估算模型在D1,D2,D3密度下分别以RVI[497,935],DVI[720,936],DVI[551,724]为参数拟合的估算模型y=-0.0014x2+0.1201x+2.1747(R2=0.65),y=-30.405x2+10.122x+6.2617(R2=0.49),y=965.98x2-285.68x+29.929(R2=0.65)最好,RMSE分别为0.73、0.34、0.10。相对叶面积密度的高光谱估算模型在D1,D2,D3密度下分别以RVI[1143,947],R945,RDVI[712,552]拟合的估算模型y=-19.588x2+31.649(R2=0.61),y=-26.266x2+20.746x+10.726(R2=0.42),y=-2207.436x2+538.426x-17.601(R2=0.96)精度最高,RMSE分别为0.82,2.45,0.41。(3)不同密度下,春玉米产量的估算模型不同。生物产量的高光谱估算模型在D1,D2,D3密度下分别以NDVI[719,1080],R615,DVI[1020,671]拟合的估算模型y=75.205e2.668x(R2=0.62),y=-13894.287x2+1651.835x+110.938(R2=0.22),y=120.438x2-44.535x+95.499(R2=0.34)精度最高,RMSE分别为1.99,3.61,2.37。经济产量的高光谱估算模型在D1,D2,D3密度下分别以DVI[691,401],DVI[1102,533],NDVI[1122,780]拟合的估算模型y=1004.37e-0.716x(R2=0.58),y=21255.197x2-22028.232x+6757.953(R2=0.54),y=1122.356+19.933lnx(R2=0.39)精度最高,RMSE分别为1.24,1.13,2.37。【结论】利用高光谱遥感可以对不同密度下春玉米冠层结构参数及产量估算。
[Abstract]:[objective] to establish a hyperspectral estimation model of canopy leaf area index and yield of spring maize under different densities by analyzing the correlation between canopy structure, canopy leaf area index, yield and canopy hyperspectral spectrum of spring maize under different densities in Xinjiang. [methods] the field experiments were carried out in different spring maize varieties and different density levels in Xinjiang. The spectral reflectance of canopy, leaf area index and stratified leaf area were measured. Based on the data of biological yield, plant height, ear position and economic yield, the correlation of cumulative leaf area index, relative leaf area density, biological yield and economic yield with hyperspectral data was analyzed, and the leaf area index was established. Relative leaf area density, biological yield, economic yield, and model accuracy were tested. [results] through the experimental study, the following results were obtained: 1) with the increase of density, The leaf position of the longest and widest leaves of maize remained approximately unchanged, the leaf width decreased significantly with the increase of density, the leaf length increased first and then decreased with the increase of density, and the leaf area of single plant decreased, but the leaf area of basal leaf increased slightly. The leaf area of the lower leaves increased first and then decreased, the middle leaves showed different differences among different years, the upper leaves of 17 leaves and more) leaf area gradually decreased, and the population leaf area increased. The difference of relative leaf area between middle and upper part was great, the difference of stem dry weight and leaf dry weight was large, and the difference of leaf dry weight was small. Under D _ 3 density, the economic yield was positively correlated with ear height and relative leaf area density, and negatively correlated with biological yield (< 0.05. 2) under different densities, the estimation models of leaf area index and relative leaf area density of spring maize were different. The hyperspectral estimation model of leaf area index was fitted by RVI [497935] DVI [720936] DVI [551724] at D _ (1) C _ (2) D _ (2) D _ (3) densities, respectively. The estimated model y=-0.0014x2 0.1201x 2.1747R _ (2) O _ (2) 0.65 ~ (0.405x) 10.122x 6.26405x2 10.122x 6.2617R20.495.98x2-285.68x 29.929R2O _ (0.65) was the best one. The hyperspectral estimation model of relative leaf area density was fitted with RVI [1143947] R945N RDVI [712552] at D _ (1) C _ (2) D _ (2) density, respectively. The estimation model y=-19.588x2 31.649 ~ (9) ~ (2) ~ (0.61) ~ (1) ~ 0.61 ~ (1) ~ (1) -26.266x ~ (2) 20.746x 10.726x 10.726x ~ (2 +) R20.42y-2207.436x2 538.426x-17.601C ~ (0.96) the estimation models of spring maize yield were different at different densities. The hyperspectral estimation model of biological yield was fitted with NDVI [719C1080] R615DVI [1020671] under the density of D1C D2D3, respectively. The estimation model yt75.205e2.668xR2ON0. 62OUYYU -13894.287x2 165535x 110.93835x 110.938R2n 0.34) had the highest precision of RMSE of 1.99105e2.61kW 2.37. The hyperspectral estimation model of economic yield was fitted with DVI [691401] DVI [1102533] and NDVI [1122780] respectively under the density of D _ (1) O _ (2) D _ (2) C _ (3). [conclusion] the structural parameters and yield of spring maize canopy under different densities can be estimated by using hyperspectral remote sensing, respectively, at 212555.197x2-22028.232x 6757.953 R20.54 (R2122.356 19.933lnx / R20.39). [conclusion] using hyperspectral remote sensing, we can estimate the structure parameters and yield of spring maize canopy in different density.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S513;S127

【参考文献】

相关期刊论文 前10条

1 王娜;张韫;钱文丽;王政权;谷加存;;CO_2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响[J];植物生态学报;2016年01期

2 刘冰峰;李军;贺佳;师祖姣;;基于高光谱植被指数的夏玉米地上干物质量估算模型研究[J];农业机械学报;2016年03期

3 谭昌伟;杨昕;罗明;马昌;严翔;陈亭亭;;以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演[J];中国农业科学;2015年13期

4 王丽爱;谭昌伟;杨昕;周旭东;朱新开;郭文善;;基于MK-SVR模型的小麦叶面积指数遥感反演[J];农业机械学报;2015年05期

5 张良培;;高光谱目标探测的进展与前沿问题[J];武汉大学学报(信息科学版);2014年12期

6 庄东英;李卫国;武立权;;冬小麦生物量卫星遥感估测研究[J];干旱区资源与环境;2013年10期

7 李小文;王yN婷;;定量遥感尺度效应刍议[J];地理学报;2013年09期

8 靳立斌;张吉旺;李波;崔海岩;董树亭;刘鹏;赵斌;;高产高效夏玉米的冠层结构及其光合特性[J];中国农业科学;2013年12期

9 陈鹏飞;杨飞;杜佳;;基于环境减灾卫星时序归一化植被指数的冬小麦产量估测[J];农业工程学报;2013年11期

10 李鑫川;徐新刚;鲍艳松;黄文江;罗菊花;董莹莹;宋晓宇;王纪华;;基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J];中国农业科学;2012年17期

相关博士学位论文 前7条

1 高鑫;春玉米LAI和叶片氮素营养及产量的高光谱估测模型研究[D];内蒙古农业大学;2016年

2 郎均慰;基于CMOS图像传感器的高分辨率航天推帚成像光谱仪信息获取技术研究[D];中国科学院研究生院(上海技术物理研究所);2014年

3 潘佩芬;植被生态水涵养模数遥感反演及生态水资源量计算[D];成都理工大学;2014年

4 成宝芝;基于光谱特性的高光谱图像异常目标检测算法研究[D];哈尔滨工程大学;2012年

5 吴振洲;微型Offner成像光谱仪和光谱数据处理[D];中国科学技术大学;2012年

6 徐蕊;温室黄瓜叶面积、光合作用及干物质生产对叶片含氮量响应的模拟模型[D];南京农业大学;2011年

7 刘丽娟;基于机载LiDAR和高光谱融合的森林参数反演研究[D];东北林业大学;2011年

相关硕士学位论文 前9条

1 刘秀秀;不同钾效率类型油菜干物质积累及钾素吸收利用差异研究[D];华中农业大学;2014年

2 王煈;基于HJ星遥感数据的落叶阔叶林识别模型及其全生长期LAI估算方法[D];南京大学;2014年

3 张荣霞;不同作物多种叶面积指数获取方法对比研究[D];华中农业大学;2013年

4 孙晓;基于CASI高光谱遥感数据估测森林叶面积指数研究[D];中国林业科学研究院;2012年

5 赵刚峰;冬小麦氮素营养监测和产量预报的高光谱遥感模型研究[D];西北农林科技大学;2012年

6 王俊秀;春玉米超高产群体冠层铅直结构特征及农艺措施调控[D];内蒙古农业大学;2009年

7 樊科研;基于冠层高光谱的加工番茄单产估算模型的研究[D];石河子大学;2008年

8 赵丽芳;利用Hypeion高光谱遥感数据估测森林叶面积指数[D];北京林业大学;2007年

9 刘凤丽;控制灌溉对水稻冠层结构和干物质增长影响研究[D];河海大学;2005年



本文编号:1880808

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1880808.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a3c42***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com