低温胁迫下冬小麦冠层高光谱变化特征及响应生理参数监测
本文选题:低温胁迫 + 冬小麦 ; 参考:《山西农业大学》2015年硕士论文
【摘要】:本试验以花盆种植冬小麦为研究对象,通过对拔节期冬小麦进行低温胁迫处理,并测定其冠层光谱及生理参数并分析其变化规律,建立光谱参数与生理参数的定量关系,构建基于特征光谱参数的低温胁迫后冬小麦生理参数的预测模型。结果表明:1、在不同低温胁迫处理后,冬小麦冠层光谱发生显著变化。初期近红外波段波动大,反射率有较大升高,并且随低温胁迫处理温度与时间的加剧而升高。而可见光波段,短期内差异不明显,但伴随着生育期的进行,黄、红波段开始出现水平趋势,同时近红外波段差异缩小。这表明冬小麦冠层光谱对低温胁迫的响应是敏感的。冬小麦冠层光谱一阶微分反射率在500-550 nm、700-750 nm处都有一个反射峰,而在550-600 nm之间存在一个波谷。低温胁迫后,与对照组相比,峰值降低,波谷渐近平缓。此外,红边位置向短波方向移动,T4和T5红边位置向短波方向移动了1 nm,T6红边位置移动了2 nm,发生了“蓝移”现象。2、不同低温胁迫处理下,冬小麦的叶绿素含量、类胡萝卜素、叶面积指数、地上生物量与含水量各项生理参数都出现一定的变化。低温胁迫后,叶绿素含量、类胡萝卜素和植株含水量均有所降低,并随着胁迫处理温度的降低和时间的延长,其损失程度更加严重。叶面积指数与生物量虽然随着植株发育的健全逐步升高,但同一时期下,随着低温胁迫程度加深,其降低程度更加明显。3、胁迫后5天冬小麦叶绿素含量与FDDVI(460,1095)、FDDVI(463,1095)、FDMSAVI(463, 1095)相关性最好;类胡萝卜素含量与FDDVI(675,1096)、FDMSAVI(675,1096)相关性最好,叶面积指数与FDDVI(671,947)、FDRDVI(673,947)相关性最好;地上生物量与FDDVI(674,866)、 FDMSAVI(674,866)相关性最好;水分含量与FDRVI(677,968)、FDNDVI(677,968)相关性最好。胁迫后10天冬小麦叶绿素含量与FDRVI(678,883)、FDRVI(735,883)、FDNDVI(678,883)相关性最好;类胡萝卜素含量与FDDVI(730,992)、FDRDVI(730,992)、FDMSAVI(730,992)相关性最好,叶面积指数与FDRVI(681,884)、FDNDVI(681,884)相关性最好;地上生物量与FDDVI(781,673)相关性最好;水分含量与FDDVI(682,811)、FDRVI(682,811)、FDMSAVI(682,1119)相关性最好。胁迫后20天冬小麦叶绿素含量与FDRVI(667,1193)、FDRVI(684,1193)、FDNDVI(684,1193)相关性最好:类胡萝卜素含量与FDDVI(672,1174)、FDMSAVI(672,1174)相关性最好,叶面积指数与FDDVI (673,1009)、FDRDVI(673,1009)、FDMSAVI (673,1009)相关性最好;地上生物量与FDDVI(670,883)相关性最好;水分含量与FDDVI(747,1183)、FDDVI(747,1031)、FDMSAVI(747, 1031)、FDMSAVI(747,1183)相关性最好。叶绿素含量、类胡萝卜素、叶面积指数、地上生物量、与水分含量均显示出与光谱的相关性达到显著。根据已选出的植被指数模型可以得出,低温胁迫后5天到10天阶段,植被指数模型可见光波段向长波方向移动,胁迫后10天到20天可见光波段向短波方向发生移动。各项生理指标植被指数模型均表现出这一规律。这一规律也同生理指标含量在胁迫后的变化一致,说明在胁迫后初期,冻害影响明显,但随着生育期的进行,植株本身出现恢复,冻害影响逐渐减弱。4、以响应生理参数为基础建立的光谱参数监测模型,其最佳光谱参数为FDDVI(460,1095)、 FDMSAVI(672,1174)、FDDVI(671,947)、FDDVI(674,866)、FDDVI(747,1031)。
[Abstract]:In this experiment, winter wheat planted in flowerpot was treated with low temperature stress on Winter Wheat at jointing stage, and its canopy spectral and physiological parameters were measured and its variation regularity was analyzed. The quantitative relationship between spectral parameters and physiological parameters was established, and the prediction model of physiological parameters of Winter Wheat Based on characteristic spectral parameters was constructed. The results showed that: 1, the canopy spectrum of winter wheat changed significantly after the treatment of different low temperature stress. The initial near infrared wave band fluctuated greatly, the reflectivity was higher, and the temperature and time increased with the treatment of low temperature stress. But the visible light band was not obvious in the short term, but the yellow and red band began with the growth period. There is a horizontal trend, and the difference in the near infrared band is reduced. This indicates that the canopy spectrum of winter wheat is sensitive to the response to low temperature stress. The first order differential reflectance of winter wheat canopy spectrum has a reflection peak at 500-550 nm and 700-750 nm, and there is a wave valley between 550-600 nm. The peak value decreases compared with the control group after low temperature stress. In addition, the red edge position moves to short wave direction, the position of red edge of T4 and T5 moves 1 nm in the direction of short wave, and the position of T6 red edge moves 2 nm, and the "blue shift" phenomenon occurs.2. The chlorophyll content, carotenoid, leaf area index, aboveground biomass and water content of Winter Wheat under different low temperature stress treatments are treated with different low temperature stress. The amount of chlorophyll, carotenoid and plant water content decreased after low temperature stress, and the loss degree was more serious with the decrease of stress treatment temperature and the prolongation of time. The leaf area index and biomass increased gradually with the development of plant, but under the same period, with low hypothermia. The degree of coercion was deepened and its degree of reduction was more obvious. The chlorophyll content of 5 days after stress was the best correlation with FDDVI (4601095), FDDVI (4631095), FDMSAVI (463, 1095), and the best correlation between carotenoid content and FDDVI (6751096), FDMSAVI (6751096). The leaf area index was the best correlation with FDDVI (671947) and FDRDVI (673947); up to earth. The correlation is best with FDDVI (674866) and FDMSAVI (674866); water content is the best correlation with FDRVI (677968) and FDNDVI (677968). The correlation of chlorophyll content in 10 days of Winter Wheat with FDRVI (678883), FDRVI (735883), FDNDVI (678883) is the best, and the content of carotenoids is related to FDDVI (730992), FDRDVI (730992), FDMSAVI (730992)). Best sex, leaf area index is the best correlation with FDRVI (681884), FDNDVI (681884); aboveground biomass is the best correlation with FDDVI (781673); water content is the best correlation with FDDVI (682811), FDRVI (682811), FDMSAVI (6821119). The correlation between chlorophyll content of 20 Winter Wheat after stress and FDRVI (6671193), FDRVI (6841193), FDNDVI (6841193)) Best: the correlativity between carotenoid content and FDDVI (6721174), FDMSAVI (6721174) is the best, leaf area index is the best correlation with FDDVI (6731009), FDRDVI (6731009), FDMSAVI (6731009); the aboveground biomass is the best correlation with FDDVI (670883); water content and FDDVI (7471183), FDDVI (7471031), FDMSAVI (747, 1031), FDMSAVI (747118), FDMSAVI (747118). 3) the correlation is best. Chlorophyll content, carotenoid, leaf area index, aboveground biomass, and water content all show a significant correlation with the spectrum. According to the selected vegetation index model, it can be obtained from 5 to 10 days after low temperature stress, and the visible light band of the vegetation index model moves toward the long wave direction, 10 days to 2 after stress. In the 0 day, the visible light band moved to the short wave direction. The vegetation index model of various physiological indexes showed this rule. This rule was also the same as the physiological index content after stress, which indicated that the frost damage was obviously affected in the early stage of stress, but the plant plant itself recovered with the growth period, and the effect of frost damage gradually weakened.4. The spectral parameters monitoring model based on the physiological parameters is based on the optimal spectral parameters of FDDVI (4601095), FDMSAVI (6721174), FDDVI (671947), FDDVI (674866), and FDDVI (7471031).
【学位授予单位】:山西农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S127;S512.11
【参考文献】
相关期刊论文 前10条
1 曾乃燕,何军贤,赵文,梁厚果;低温胁迫期间水稻光合膜色素与蛋白水平的变化[J];西北植物学报;2000年01期
2 陈福梓,徐宗焕,陈家金,林俩法,王加义;GIS在漳州芭乐低温冻害分析中的应用[J];福建热作科技;2004年02期
3 钱乐祥,泮学芹,赵芊;中国高光谱成像遥感应用研究进展[J];国土资源遥感;2004年02期
4 林婉玲;方平平;肖长洪;江惠民;;遥感技术在精确农业中的应用[J];安徽农学通报(上半月刊);2013年05期
5 张达;郑玉权;;高光谱遥感的发展与应用[J];光学与光电技术;2013年03期
6 靳彦华;熊黑钢;张芳;;水浇地与旱地春小麦冠层高光谱反射特征比较[J];国土资源遥感;2014年03期
7 杨哲海,韩建峰,宫大鹏,李之歆;高光谱遥感技术的发展与应用[J];海洋测绘;2003年06期
8 李章成;周清波;江道辉;吕新;林海荣;李茂松;;棉花苗期冻害高光谱特征研究[J];棉花学报;2008年04期
9 李映雪;朱艳;曹卫星;;不同施氮条件下小麦冠层的高光谱和多光谱反射特征[J];麦类作物学报;2006年02期
10 唐延林,王秀珍,王珂;利用光谱法测定水稻生物物理参数及其与光谱变量的相关性研究[J];贵州大学学报(农业与生物科学版);2002年05期
相关博士学位论文 前1条
1 王慧芳;基于多源数据冬小麦冻害遥感监测研究[D];浙江大学;2013年
相关硕士学位论文 前2条
1 魏辰阳;基于高光谱遥感技术的冬小麦晚霜冻害早期诊断研究[D];南京农业大学;2013年
2 宋月荷;冬小麦氮素积累量的高光谱遥感监测研究[D];山西农业大学;2014年
,本文编号:1914035
本文链接:https://www.wllwen.com/kejilunwen/nykj/1914035.html