基于遥感调查和RUSLE模型的贵州省土壤侵蚀对比研究
本文选题:土壤侵蚀 + 遥感调查 ; 参考:《贵州师范大学》2017年硕士论文
【摘要】:本文以典型喀斯特地区贵州省为研究区域,以贵州省2015年GF-1、ZY-1 02C与ZY-3等遥感影像、降雨量数据、DEM数据、土壤以及地质等数据为基础,根据水利部颁发的《土壤侵蚀分类分级标准》(SL190-2007)和《岩溶地区水土流失综合治理技术标准》(SL461-2009)等标准,分别采用遥感调查(地理信息系统(GIS)与遥感(RS)技术相结合)与RUSLE模型(修正的通用土壤流失方程)这两种方法对研究区域2015年土壤侵蚀状况进行调查;从统计和空间一致性的角度对两种方法的结果进行了对比分析,并针对遥感调查与RUSLE模型的土壤侵蚀成果做出优化处理。主要结论如下:(1)基于遥感调查的土壤侵蚀调查结果:全省土壤侵蚀面积共68199.40km~2,占土地总面积的38.73%。不同土壤侵蚀等级面积及比例分别为:微度侵蚀面积107899.60km~2,占土地总面积的61.27%;轻度侵蚀面积37363.39km~2,占土地总面积的21.22%;中度侵蚀面积15627.99km~2,占土地总面积的8.87%;强烈侵蚀面积9612.39km~2,占土地总面积的5.46%;极强烈侵蚀面积4187.09km~2,占土地总面积的2.38%;剧烈侵蚀面积1408.54km~2,占土地总面积的0.80%。(2)基于RUSLE模型的土壤侵蚀调查结果:全省土壤侵蚀面积为63971.75km~2,占土地总面积的36.33%。不同等级土壤侵蚀面积及比例分别为:微度侵蚀面积112127.25km~2,占全省总面积的63.67%;轻度侵蚀面积39109.27km~2,占全省总面积的22.21%;中度侵蚀面积16719.53km~2,占全省总面积的9.49%;强烈侵蚀面积5575.65km~2,占全省总面积的3.17%;极强烈侵蚀面积2044.59km~2,占全省总面积的1.16%;剧烈侵蚀面积522.71km~2,占全省总面积的0.30%。(3)基于遥感调查方法与RUSLE模型的两套土壤侵蚀结果的一致性较好。与遥感调查的结果相比,RUSLE模型的土壤侵蚀面积减少4227.64km~2,面积比例降低2.40%。微度侵蚀面积增加4227.64km~2,面积比例升高2.40%;轻度侵蚀面积增加1745.88km~2,面积比例升高0.99%;中度侵蚀面积增加1091.55km~2,面积比例升高0.62%;强烈侵蚀面积减少4036.75km~2,面积比例降低2.29%;极强烈侵蚀面积减少2142.49km~2,面积比例降低1.22%;剧烈侵蚀面积减少885.83km~2,面积比例降低0.50%。基于遥感调查的土壤侵蚀成果数据与使用RUSLE模型得到的土壤侵蚀成果数据在各个等级的土壤侵蚀面积及比例上呈现相同的特征:侵蚀强度主要以轻度侵蚀与中度侵蚀为主;全省微度侵蚀面积最大,剧烈侵蚀面积最小;土壤侵蚀强度的各个等级按照面积大小顺序排列为微度侵蚀轻度侵蚀中度侵蚀强烈侵蚀极强烈侵蚀,呈现倒金字塔形状。在贵州省的大部分地区,遥感调查与RUSLE模型对土壤侵蚀强度等级的判断一致;侵蚀强度等级的判断不一致的地区主要集中在贵州省的西部、西南以及北部的部分地区。(4)采用二分法的方法来对基于遥感调查与RUSLE模型的贵州省2015年土壤侵蚀结果做优化处理。优化处理后的全省土壤侵蚀面积为66156.14km~2,土壤侵蚀发生率37.57%,高于遥感调查结果,低于RUSLE模型。不同等级土壤侵蚀面积及比例分别为:微度侵蚀面积109942.86km~2,占全省总面积的62.43%;轻度侵蚀面积38504.43km~2,占全省总面积的21.87%;中度侵蚀面积18028.73km~2,占全省总面积的10.24%;强烈侵蚀面积7523.27km~2,占全省总面积的4.27%;极强烈侵蚀面积2009.77km~2,占全省总面积的1.14%;剧烈侵蚀面积89.94 km~2,占全省总面积的0.05%。
[Abstract]:Based on the remote sensing images of GF-1, ZY-1 02C and ZY-3 in 2015, rainfall data, DEM data, soil and geology, the paper based on the typical Karst province Guizhou Province, according to the classification standards of soil erosion (SL190-2007) issued by the Ministry of water resources and the technical standard for comprehensive treatment of soil erosion in karst area (SL46 1-2009) the two methods, such as remote sensing survey (GIS) and remote sensing (RS), and RUSLE model (modified general soil loss equation) were used to investigate the soil erosion status in the study area in 2015, and the results of the two methods were compared and analyzed from the point of view of statistical and spatial consistency. The soil erosion results of remote sensing investigation and RUSLE model are optimized. The main conclusions are as follows: (1) the results of soil erosion survey based on remote sensing survey: the total soil erosion area of the whole province is 68199.40km~2, and the different soil erosion grade area and proportion of 38.73%. in the total area of the land are as follows: the micro erosion area is 107899.60km~2, which accounts for the total land. The area is 61.27%, the mild erosion area 37363.39km~2 accounts for 21.22% of the total land area, and the medium erosion area is 15627.99km~2, accounting for 8.87% of the total land area; the strong erosion area is 9612.39km~2, accounting for 5.46% of the total land area; the extremely strong erosion area is 4187.09km~2, accounting for 2.38% of the total land surface area; the severe erosion area is 1408.54km~2, accounting for the total land area. 0.80%. (2) soil erosion survey results based on RUSLE model: the soil erosion area of the province is 63971.75km~2, and the soil erosion area and proportion of different grade of 36.33%. in the total area of the land are respectively: the micro erosion area is 112127.25km~2, accounting for 63.67% of the total area of the province, and the mild erosion area is 22.21% of the total area of the province, and the moderate area is 22.21%. The erosion area 16719.53km~2 accounts for 9.49% of the total area of the province, and the strong erosion area is 5575.65km~2, which accounts for 3.17% of the total area of the province, and the extremely strong erosion area is 2044.59km~2, accounting for 1.16% of the total area of the province, and the intensive erosion area 522.71km~2, accounting for 0.30%. (3) of the total area of the province, is based on the two sets of soil erosion results of remote sensing and RUSLE model. Compared with the results of remote sensing, the soil erosion area of the RUSLE model decreased by 4227.64km~2, the area ratio decreased by 2.40%. micro erosion area by 4227.64km~2, the area ratio increased by 2.40%, the area ratio increased by 1745.88km~2, the area ratio increased by 0.99%, the medium erosion area increased by 1091.55km~2, and the area ratio increased by 0.62%. The area of intensive erosion is reduced by 4036.75km~2, the area ratio is reduced by 2.29%, the area of extremely strong erosion is reduced by 2142.49km~2, the area ratio is reduced by 1.22%, the area of severe erosion is reduced by 885.83km~2, and the area ratio is reduced by the data of soil erosion results based on Remote Sensing investigation and the data of soil erosion results obtained by using RUSLE model type based on the remote sensing investigation. The area and proportion of soil erosion show the same characteristics: the main erosion intensity mainly is mild erosion and moderate erosion, the area of micro erosion in the province is the largest, and the area of severe erosion is the smallest. Inverted Pyramid shape. In most areas of Guizhou Province, remote sensing investigation and RUSLE model are consistent with the assessment of soil erosion intensity grade; the areas of inconsistent judgment of erosion intensity grade are mainly concentrated in the western, southwest and northern parts of Guizhou province. (4) the method of two points method is used to study the remote sensing and the model based on the remote sensing. The soil erosion area of Guizhou province in 2015 was optimized. The soil erosion area of the province was 66156.14km~2, the rate of soil erosion was 37.57%, which was higher than that of remote sensing. It was lower than the RUSLE model. The soil erosion area and proportion of different grades were respectively: the micro erosion surface accumulated 109942.86km~2, which accounted for 62.43% of the total area of the province. The erosion area 38504.43km~2 accounts for 21.87% of the total area of the province, and the moderate erosion area is 18028.73km~2, accounting for 10.24% of the total area of the province; the strong erosion area is 7523.27km~2, accounting for 4.27% of the total area of the province; the extremely strong erosion area is 2009.77km~2, accounting for 1.14% of the total area of the province, and the intensive erosion area is 89.94 km~2, accounting for 0.05%. of the total area of the province.
【学位授予单位】:贵州师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S157
【参考文献】
中国期刊全文数据库 前10条
1 李和平;郭海祥;;贵州省生态系统土壤保持功能时空分布演变研究[J];地理空间信息;2014年04期
2 陈思旭;杨小唤;肖林林;蔡红艳;;基于RUSLE模型的南方丘陵山区土壤侵蚀研究[J];资源科学;2014年06期
3 夏美玲;高之栋;周岩;王新军;赵言文;;赣榆县夹谷山坡面侵蚀产沙特征及其影响因素[J];水土保持通报;2014年02期
4 李晋;熊康宁;王仙攀;;喀斯特地区小流域地下水土流失观测研究[J];中国水土保持;2012年06期
5 齐述华;蒋梅鑫;于秀波;;基于遥感和ULSE模型评价1995~2005年江西土壤侵蚀[J];中国环境科学;2011年07期
6 陆建忠;陈晓玲;李辉;刘海;肖靖靖;殷剑敏;;基于GIS/RS和USLE鄱阳湖流域土壤侵蚀变化[J];农业工程学报;2011年02期
7 熊康宁;陈起伟;;基于生态综合治理的石漠化演变规律与趋势讨论[J];中国岩溶;2010年03期
8 张盼盼;胡远满;肖笃宁;李秀珍;殷洁;;一种基于多光谱遥感影像的喀斯特地区裸岩率的计算方法初探[J];遥感技术与应用;2010年04期
9 王恒松;熊康宁;刘云;;喀斯特区地下水土流失机理研究[J];中国水土保持;2009年08期
10 周念清;李彩霞;江思珉;唐益群;;普定岩溶区水土流失与土壤漏失模式研究[J];水土保持通报;2009年01期
中国博士学位论文全文数据库 前2条
1 鲁克新;黄土高原流域生态环境修复中的水沙响应模拟研究[D];西安理工大学;2006年
2 周为峰;基于遥感和GIS的区域土壤侵蚀调查研究[D];中国科学院研究生院(遥感应用研究所);2005年
中国硕士学位论文全文数据库 前7条
1 潘小艳;重庆喀斯特山区土壤侵蚀与土地利用/覆被的耦合关系研究[D];西南大学;2014年
2 张凯;共和盆地土壤侵蚀空间分布特征及定量分析[D];青海师范大学;2014年
3 苏永;基于GIS技术和USLE模型的环江县土壤侵蚀研究[D];广西师范学院;2013年
4 袁克勤;基于GIS岩溶山地小流域土壤侵蚀量计算[D];西南大学;2009年
5 阳小聪;红壤丘陵区生态适宜性评价与土壤物理性质研究[D];湖南大学;2008年
6 刘振忠;遥感影像融合在水土流失动态监测中的研究与应用[D];华中科技大学;2007年
7 杨广斌;基于网格数据的喀斯特山区土壤侵蚀研究[D];贵州师范大学;2004年
,本文编号:1986958
本文链接:https://www.wllwen.com/kejilunwen/nykj/1986958.html