免耕对广东典型稻区早稻稻田甲烷排放特征的影响
本文选题:免耕 + 甲烷 ; 参考:《甘肃农业大学》2017年硕士论文
【摘要】:甲烷(CH_4)是造成温室效应的主要温室气体。相同分子数的CH_4温室效应比二氧化碳更高,变暖潜力是二氧化碳的25倍,严重影响着人类的生存环境。而稻田是CH_4的重要排放源,如何减少稻田CH_4的排放对消减温室气体的排放具有重要意义。本研究选取典型亚热带季风性湿润气候区的广东省双季稻区进行定位试验,设置了免耕和常规耕作两种模式,包括常规不施肥、常规施肥、免耕不施肥、免耕施肥4个处理,观测各处理CH_4排放通量的日变化及生育期变化,探究免耕施肥对早稻稻田CH_4排放的影响,并分析了温度、风速、湿度、土壤有机质、土壤pH、土壤酶活等对稻田CH_4排放的影响机制。结果如下:1.水稻分蘖期稻田CH_4排放有明显的日变化特征,各处理稻田CH_4排放趋势一致,排放峰值出现在下午15:00,最低排放值出现在夜晚21:00。CH_4日平均排放量大小为:常规施肥(48.56mg/m~2·h)常规不施肥(24.47mg/m~2·h)免耕施肥(8.88mg/m~2·h)免耕不施肥(1.97mg/m~2·h)。水稻抽穗期稻田CH_4排放的日变化特征不明显,各处理CH_4排放峰值与最低值出现不一致,各处理CH_4日平均通量大小次序为:常规不施肥(19.43 mg/m~2·h)免耕施肥(16.06 mg/m~2·h)免耕不施肥(5.34 mg/m~2·h)常规施肥(4.67 mg/m~2·h)。2.在整个生育期内,免耕处理稻田CH_4的排放通量低于常规处理。各处理稻田CH_4排放的动态变化表现为多峰模式,稻田CH_4排放最高值出现在分蘖期,最低值出现在晒田时(移栽后41天),整个生育期各处理稻田CH_4排放通量均值大小关系为:常规不施肥常规施肥免耕施肥免耕不施肥,分别为25.68mg/m~2·h,19.55 mg/m~2·h,11.67 mg/m~2·h,4.54 mg/m~2·h,免耕处理稻田CH_4排放量比常规处理稻田CH_4排放量低64.16%。3.免耕提高了土壤酶活性,且有利于培肥地力。与常规耕作比较,免耕脲酶、酸性磷酸酶活性分别提高了5.27%-10.85%和5.26%-6.56%,脲酶活性在孕穗期和抽穗期免耕的主效应达到显著水平(P0.05),酸性磷酸酶活性在孕穗期、抽穗期和成熟期免耕的主效应达到显著水平(P0.05)。土壤养分测试结果表明,免耕提高了土壤有机质、铵态氮、硝态氮含量。土壤有机质含量免耕比常规耕作模式提高4.00%-8.92%,并在分蘖期、孕穗期、抽穗期和成熟期的主效应达到显著水平(P0.05);土壤铵态氮含量免耕比常规耕作模式提高16.50%-24.88%,并在孕穗期和抽穗期的主效应达到显著水平(P0.05);土壤硝态氮含量免耕比常规耕作模式提高17.73%,并在孕穗期、抽穗期和成熟期的主效应达到显著水平(P0.05)。但免耕有降低土壤pH的趋势。4.免耕和常规耕作模式稻田CH_4气体的日尺度排放与气温、地表温度、5cm土温、草面温度、绝对湿度、风速等呈正相关关系。土壤pH、土壤有机质、土壤铵态氮含量及土壤脲酶活性均与CH_4排放通量为正相关关系,土壤硝态氮含量与稻田CH_4排放量相关性不显著。
[Abstract]:Methane (CH4) is the main greenhouse gas that causes Greenhouse Effect. CH4 Greenhouse Effect with the same molecular number is higher than carbon dioxide, and the warming potential is 25 times higher than that of carbon dioxide, which seriously affects the living environment of human beings. The rice field is an important source of CH4 emission. How to reduce CH4 emission from paddy field is of great significance to reduce the greenhouse gas emission. In this study, two models of no-tillage, conventional tillage, no-tillage and no-tillage fertilization were established. The effects of no-tillage fertilization on CH4 emission from early rice paddy field were investigated by observing the diurnal variation of Ch _ 4 emission flux and growth period of various treatments, and the temperature, wind speed, humidity and soil organic matter were analyzed. Effects of soil pH and soil enzyme activity on CH4 emission from paddy field. The result is as follows: 1. CH4 emission from rice field at tillering stage showed obvious diurnal variation, and the CH4 emission trend of all treatments was the same. The emission peak appeared at 15: 00 in the afternoon, and the lowest emission value appeared at 21: 00.CH4 at night. The average emission value was: conventional fertilization (48.56mg/m~2 h), conventional no-tillage fertilization (24.47mg/m~2 h), no-tillage fertilization (8.88mg/m~2 h), no-tillage fertilization (1.97mg/m~2 h). H). The diurnal variation of CH4 emission in rice field at heading stage was not obvious. The order of the average fluxes of Ch _ 4 in each treatment was as follows: no fertilization (19.43 mg/m~2 h), no-tillage fertilization (16.06 mg/m~2 h), no-tillage fertilization (5.34 mg/m~2 h), conventional fertilization (4.67 mg/m~2 h) .2. During the whole growth period, Ch _ 4 emission flux of no-tillage treatment was lower than that of conventional treatment. The dynamic change of Ch _ 4 emission in paddy field was multi-peak mode, and the highest value of Ch _ 4 emission in paddy field appeared at tillering stage. The mean value of CH4 emission flux of rice field in the whole growth period was: conventional fertilization, no-tillage, no-tillage and no fertilization. The CH4 emission of no-tillage treatment rice field was 64.16% lower than that of conventional rice field. No tillage increased soil enzyme activity and was beneficial to fertility. Compared with conventional tillage, the activities of urease and acid phosphatase in no-tillage were 5.27-10.85% and 5.26-6.56, respectively. The main effect of no-tillage was significant at booting stage and heading stage (P0.05), and the activity of acid phosphatase was at booting stage. The main effect of no-tillage at heading stage and ripening stage was significant (P0.05). The results of soil nutrient test showed that the content of organic matter, ammonium nitrogen and nitrate nitrogen were increased by no-tillage. The content of soil organic matter in no-tillage was 4.00-8.92 higher than that in conventional tillage, and it was increased at tillering stage and booting stage. The main effects at heading stage and ripening stage were significant (P0.05), the content of soil ammonium nitrogen in no-tillage was 16.50-24.88 higher than that in conventional tillage, and the main effect was significant at booting stage and heading stage (P0.05); No-tillage of soil nitrate content was higher than that of conventional tillage (P0.05). The pattern was increased by 17.73, and at booting stage, The main effects at heading stage and mature stage were significant (P0.05). But no-tillage had the tendency of decreasing soil pH. The diurnal emission of CH4 gas was positively correlated with air temperature, surface temperature (5cm), grass surface temperature, absolute humidity, wind speed and so on. Soil pH, soil organic matter, soil ammonium nitrogen content and soil urease activity were positively correlated with Ch _ 4 emission flux, but no significant correlation was found between soil nitrate nitrogen content and Ch _ 4 emission from paddy field.
【学位授予单位】:甘肃农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X712;S511.31
【相似文献】
相关期刊论文 前10条
1 陈冠雄,黄国宏,,黄斌,吴杰,于克伟,徐慧,薛晓华,王正平;稻田CH_4和N_2O的排放及养萍和施肥的影响[J];应用生态学报;1995年04期
2 李玉娥,林而达,谢军飞,杨志伟;我国东部样带土地利用方式对温室气体排放通量的影响[J];中国生态农业学报;2005年02期
3 万晓红;周怀东;王雨春;刘玲花;陆瑾;;白洋淀湖泊湿地氧化亚氮的排放通量初探[J];生态环境;2008年05期
4 白红英,韩建刚,张一平;覆盖种植措施对农田土壤中N_2O排放的影响[J];农业环境科学学报;2003年04期
5 刘晔,牟玉静,钟晋贤,杨文襄;氧化亚氮在森林和草原中的地-气交换[J];环境科学;1997年05期
6 戴佳伟;钱坤;陈琛;严平;;安徽淮河流域农田温室气体排放通量特征研究[J];安徽农业科学;2011年32期
7 于克伟,陈冠雄,杨思河,吴杰,黄斌,黄国宏,徐慧;几种旱地农作物在农田N_2O释放中的作用及环境因素的影响[J];应用生态学报;1995年04期
8 吕雪娟,杨军,陈玉芬,杨崇,刘剑虹,伍时照;广州地区早稻品种与施肥对稻田甲烷排放通量的影响研究[J];华南农业大学学报;1998年04期
9 陈卫卫;张友民;王毅勇;赵志春;顾江新;;三江平原稻田N_2O通量特征[J];农业环境科学学报;2007年01期
10 吴家梅;纪雄辉;彭华;霍莲杰;刘勇;朱坚;;不同种类有机肥施用对一季稻田CH_4排放的影响[J];农业环境科学学报;2011年08期
相关会议论文 前3条
1 吴丰成;谢品华;李昂;司福祺;窦科;刘宇;徐晋;王界;;基于车载被动差分光学吸收光谱技术的甲醛排放通量遥测研究[A];中国光学学会2010年光学大会论文集[C];2010年
2 白建辉;王庚辰;Brad Baker;Patrick Zimmerman;梁宝生;;内蒙古草原异成二烯排放通量的测量[A];新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“农业气象与生态环境”分会论文集[C];2003年
3 张茂亮;郭正府;成智慧;张丽红;郭文峰;杨灿尧;付庆州;温心怡;;长白山火山区温泉温室气体排放通量研究[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(中)[C];2012年
相关博士学位论文 前7条
1 李杨杰;植被在长江口湿地温室气体排放过程中的影响机制研究[D];华东师范大学;2015年
2 周文昌;人类活动对若尔盖高原泥炭地碳通量和碳储量的影响[D];中国林业科学研究院;2015年
3 胡志强;稻田与蟹/鱼养殖湿地甲烷和氧化亚氮排放的观测比较研究[D];南京农业大学;2015年
4 徐坤;不同种植年限人工苜蓿地土壤碳氮储量和温室气体排放通量研究[D];宁夏大学;2014年
5 李德军;珠江三角洲森林和蔬菜地土壤一氧化氮排放[D];中国科学院研究生院(广州地球化学研究所);2007年
6 郭李萍;农田温室气体排放通量与土壤碳汇研究[D];中国农业科学院;2000年
7 王薇;温室气体及其稳定同位素排放通量测量技术和方法研究[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 杜宝玉;森林土壤汞排放通量的现场测试[D];清华大学;2014年
2 沈仕洲;沼液灌溉条件下农田土壤CO_2和N_2O排放特征及影响因素[D];中国农业科学院;2015年
3 孙伟军;设施蔬菜地土壤N_2O排放通量及其产生途径[D];南京师范大学;2015年
4 张清磊;胶州湾典型滨海湿地CO_2排放通量研究[D];青岛大学;2015年
5 陈思;外源C、N添加对冻结过程中土壤N_2O排放的影响[D];东北农业大学;2015年
6 王旭燕;不同施氮水平对黄土高原旱作农田CH_4、N_2O排放通量的影响[D];甘肃农业大学;2015年
7 宋敏;不同生物质炭输入水平下旱作农田温室气体排放研究[D];甘肃农业大学;2016年
8 朱二雄;不同放牧强度对高寒草甸CO_2排放通量的影响[D];西北农林科技大学;2016年
9 张芳;新乡市卫河水体N_2O和CH_4溶存浓度的时空分布及排放通量研究[D];河南师范大学;2016年
10 陈晓龙;耕作方式对圩区单季稻田和冬小麦田温室气体排放的影响研究[D];安徽农业大学;2016年
本文编号:2117866
本文链接:https://www.wllwen.com/kejilunwen/nykj/2117866.html