当前位置:主页 > 科技论文 > 农业技术论文 >

亚热带常绿阔叶林凋落物生产及其养分含量对模拟氮沉降的响应

发布时间:2018-07-24 15:04
【摘要】:森林凋落物是森林生态系统中物质循环和能量流动的一个主要环节,是森林生态系统功能过程的重要组成部分。在安徽省石台县通过对天然常绿阔叶林进行模拟氮沉降试验:对照(CK,0 kg·hm-2·a-1)、低氮(LN,50 kg N·hm-2·a-1)、高氮(T1,100 kg N·hm-2·a-1)、高氮+磷(T2,100 kg N·hm-2·a-1+50 kg P·hm-2·a-1),研究林内凋落物数量、组成及其养分等季节动态,经过一年的实验观测,研究得到初步结论如下。1.凋落物量不同水平模拟N处理样地的年凋落物量总量有所不同。甜槠林四种处理的年凋落量分别是:CK,7.19 t·hm-2·a-1、LN,8.85 t·hm-2·a-1、HN,8.77 t·hm-2·a-1和HN+P,9.41 t·hm-2·a-1,LN、HN、HN+P处理均一定程度上增加了凋落物量。苦槠林三种处理的年凋落量分别是:CK,7.86 t·hm-2·a-1、HN,9.21 t·hm-2·a-1和HN+P,8.84t·hm-2·a-1,三种处理亦均增加了凋落物产量。各模拟N沉降处理年凋落物产量均落入亚热带森林年均凋落量范围之内(3.0~14.44 t·hm-2·a-1),说明凋落物量具有一定的地带性。2.凋落物组分凋落物各组分大小顺序为:叶枝花果杂质。这和祁门亚热带常绿阔叶林不同凋落物各组分及其占总凋落量的比例存在一定差异,叶凋落量在各处理中都占有绝对优势。3.凋落特征甜槠林与苦槠林均具有明显的凋落节律,季节动态均为双峰型。一个高峰发生在雨季刚开始的4月,另一个高峰发生在11月,凋落量最少出现在3月。不同模拟N处理处理凋落高峰期有差异。其中叶的凋落特征与总量的凋落特征相似,说明叶在凋落物中占有主导地位。与对照相比,经施肥处理后,凋落特征并未发生显著变化。4.凋落物养分主要元素年均含量大小顺序为:NKCaMgP,且落叶中养分含量最高。LN、HN、HN+P处理均增加了凋落物N含量。在落叶中,各营养元素季节动态性较强。在甜槠林,凋落物的N年归还量分别为:CK,55.77、LN,64.44、HN,62.60、HN+P,69.08 kg·hm-2;P年归还量分别为1.73、2.10、2.07、2.33 kg·hm-2;K年归还量分别为34.72、39.11、39.96、40.23 kg·hm-2;Ca年归还量分别为38.55、46.49、40.67、40.89 kg·hm-2;Mg年归还量分别为26.23、34.64、30.12、30.98 kg·hm-2。三种处理均增加了主要元素的年归还量,大小顺序为LNHN+PHNCK。苦槠林中,凋落物N的年归还量分别为:CK,58.27、HN,70.74、HN+P,65.42 kg·hm-2;P年归还量分别为2.71、3.67、3.02 kg·hm-2;K年归还量分别为36.89、49.48、43.52kg·hm-2;Ca年归还量分别为48.97、52.86、49.45 kg·hm-2;Mg年归还量分别为23.73、24.92、21.89 kg·hm-2。施肥处理同样增加了N、P、K、Ca、Mg的年归还量。大小顺序为HNHN+PCK。5.凋落物各组分C/N比与对照相比,不同处理各组分C/N比值均有下降。说明经过模拟氮沉降处理后,N含量明显提高,引起C/N比值下降。
[Abstract]:Forest litter is a main link of material circulation and energy flow in forest ecosystem, and it is an important part of forest ecosystem function process. Simulated nitrogen deposition experiments were carried out in natural evergreen broad-leaved forest in Shitai County, Anhui Province. The seasonal dynamics of litter amount, composition and nutrient were studied by means of CK 0 kg hm-2 a-1, low nitrogen 50 kg N hm-2 a-1, high nitrogen (T1100 kg N hm-2 a-1), high nitrogen and phosphorus (T2100 kg N hm-2 a-1 50 kg P hm-2 a-1). After one year of experimental observation, the preliminary conclusions are as follows. 1. The amount of litter in different levels of simulated N treatments is different in the total amount of litter per year. In Castanopsis carlesii forest, the annual litter amount was 7.19 t hm-2 ~ (-1) LN ~ (1), 8.85 t / a ~ (-1) hm-2 ~ (-1) hm-2 a ~ (8.77 t) hm-2 a ~ (-1) and 9.41 t hm-2 ~ (-1) HNN P, respectively, which increased the litter amount to a certain extent. In Castanopsis carlesii forest, the annual litter amount was 7.86 t hm-2 / a ~ (-1) HNN 9.21 t hm-2 a ~ (-1) and 8.84 t / a ~ (-1) hm-2 a ~ (-1) respectively, and the litter yield was also increased by the three treatments. The annual litter yield of each simulated N deposition treatment fell within the range of annual litter amount of subtropical forest (3.0 ~ 14.44t hm-2 ~ (-1), which indicated that litter yield had a certain zonality. 2. The order of litter components was as follows: leaf branch, flower and fruit impurity. There were some differences between different litter components and their proportion to total litter in Qimen subtropical evergreen broadleaved forest, and leaf litter had absolute advantage in all treatments. Both Castanopsis eyrei forest and Castanopsis eyrei forest have obvious rhythm of litter, and the seasonal dynamics are both bimodal. One peak occurred in April, the start of the rainy season, and the other peak occurred in November, at least in March. The peak period of litter was different in different simulated N treatments. The characteristics of leaf litter were similar to that of total litter, indicating that leaf played a dominant role in litter. Compared with the control, the litter characteristics did not change significantly after fertilization. 4. The average annual content of main nutrient elements in litter was in the order of: (1) NKCaMgP, and the highest nutrient content in litter was. LNN (HNN) HN P treatment increased the N content of litter. In the deciduous leaves, the seasonal dynamics of each nutrient element is strong. In Castanopsis carlesii forest, the annual return amount of litter was 55.77kg / hm-2K, respectively. The annual return amount of litter was 64.44.44 (HNN) 62.60m ~ (-1) HN ~ (69.08) kg 路m ~ (-2) P = 1.732.10 ~ (2.33) kg 路hm ~ (-2) K, respectively. The annual return quantity of litter was 34.72C ~ (39.119.9N) ~ (40.23) kg 路h ~ (-2) Ca = 38.555.46.46.46.46.46.46.46.7N ~ 40.89 kg 路h ~ (-2) mg, respectively. The annual return quantity of litter was 26.233.644 ~ (30.1230.98) kg 路h ~ (-2) mg 路m ~ (-2) 路m ~ (-1) 路h ~ (-1) 路h ~ (-2) K ~ (-1). Each of the three treatments increased the annual return of the main elements in the order of LNHN PHNCK. In Castanopsis carlesii forest, the annual return amount of litter N was 58.27% HNN 70.74 kg / hm ~ (-2) P was 2.71 ~ (3.67) kg 路hm ~ (-2) K ~ (-1), respectively. The annual return amount of litter N was 36.89999.49.43.52kg / h ~ (-2) Ca ~ (-1) = 48.97m ~ (52.86.45) kg 路hm ~ (-2) mg = 23.733N 24.922289 kg 路hm ~ (-2) 路hm ~ (-2), respectively. The annual return of mg was also increased by fertilization. The order of size is HNHN PCK.5. Compared with the control, the C / N ratio of different treatments decreased. The results show that after simulated nitrogen deposition, the content of N increases obviously, which results in the decrease of C / N ratio.
【学位授予单位】:安徽农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S714

【相似文献】

相关期刊论文 前10条

1 朱金兆,刘建军,朱清科,吴钦孝;森林凋落物层水文生态功能研究[J];北京林业大学学报;2002年Z1期

2 李雪峰;韩士杰;胡艳玲;赵玉涛;;长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J];应用生态学报;2008年02期

3 万猛;田大伦;樊巍;;豫东平原杨-农复合系统凋落物的数量、组成及其动态[J];生态学报;2009年05期

4 刘桂霞;王谦谦;张丹丹;;凋落物和覆土对防风种子萌发及早期生长的影响[J];草业科学;2010年02期

5 马红亮;刘维丽;高人;杨玉盛;孙杰;;凋落物与单宁酸对森林土壤无机氮的影响[J];应用生态学报;2011年01期

6 涂玉;尤业明;孙建新;;油松-辽东栎混交林地表凋落物与氮添加对土壤微生物生物量碳、氮及其活性的影响[J];应用生态学报;2012年09期

7 罗新萍;;云南泸水5种生态公益林凋落物持水性研究[J];西南林业大学学报;2012年04期

8 崔洋;汪思龙;于小军;颜绍馗;;森林土壤动物对凋落物早期分解及养分释放的影响[J];生态学杂志;2012年11期

9 汪思龙,陈楚莹;凋落物对土壤酸化的缓冲及其对根系生长的影响[J];生态学杂志;1992年04期

10 彭耀强;薛立;曹鹤;任向荣;梁丽丽;;三种阔叶林凋落物的持水特性[J];水土保持学报;2006年05期

相关会议论文 前3条

1 郭继勋;;植物凋落物研究概述[A];中国植物学会七十周年年会论文摘要汇编(1933—2003)[C];2003年

2 殷秀琴;陈鹏;;小兴安岭人工云冷杉林凋落物层土壤动物群落动态研究[A];土地覆被变化及其环境效应学术会议论文集[C];2002年

3 吴华;张建利;喻理飞;卢红英;袁丛军;;草海流域不同森林类型枯落物水源涵养能力研究[A];第十五届中国科协年会第8分会场:环境科技创新与生态环境建设研讨会论文集[C];2013年

相关博士学位论文 前10条

1 贾秀芹;千岛湖片段化生境中凋落物降解的差异及其对大气氮沉降的响应[D];南京大学;2017年

2 陈光升;华西雨屏区几种植被恢复模式凋落物的生态功能研究[D];四川农业大学;2008年

3 王春阳;黄土高原生态重建中植物凋落物碳氮在土壤中转化特性研究[D];西北农林科技大学;2011年

4 姚健;喀斯特人工林凋落物特性及对土壤生态功能影响[D];南京林业大学;2011年

5 王静;凋落物对典型草原植被及土壤水分的影响[D];内蒙古农业大学;2011年

6 潘辉;三种相思树人工林凋落物养分归还功能及碳平衡研究[D];福建农林大学;2008年

7 肖以华;冰雪灾害导致的凋落物对亚热带森林土壤碳氮及温室气体通量的影响[D];中国林业科学研究院;2012年

8 王意锟;不同杨树—农作物复合经营模式下凋落物分解的研究[D];南京林业大学;2012年

9 程煜;中亚热带木荷马尾松林恢复过程的群落及凋落物特征研究[D];福建农林大学;2006年

10 易志军;桉树人工林生态系统中林木生长、养分平衡与地力维护研究[D];中南林学院;2002年

相关硕士学位论文 前10条

1 刘诚诚;模拟氮沉降和凋落物组成对柳杉人工林凋落物层土壤动物多样性的影响[D];四川农业大学;2014年

2 姜沛沛;陕西省森林生态系统乔灌草叶片与凋落物C、N、P化学计量特征[D];西北农林科技大学;2016年

3 左巍;青海高寒区不同林分凋落物养分归还与碳固定[D];北京林业大学;2016年

4 孙双红;林隙大小对阔叶红松林凋落物层及土壤层酶活性影响[D];东北林业大学;2016年

5 张素彦;凋落物的去除和添加对典型草原生态系统碳通量的影响[D];江西师范大学;2016年

6 易志强;红壤退化恢复林地凋落物归还特征与土壤水源涵养功能评价[D];南昌工程学院;2017年

7 张林;亚热带常绿阔叶林凋落物生产及其养分含量对模拟氮沉降的响应[D];安徽农业大学;2015年

8 王庆玲;黔中地区几种喀斯特次生林凋落物生态功能研究[D];贵州师范大学;2009年

9 郭伟;川西亚高山植物层次调控对凋落物凋落与分解动态及苔藓的影响[D];四川农业大学;2010年

10 刘尚华;京西百花山区9种植物群落凋落物对土壤环境影响研究[D];内蒙古农业大学;2008年



本文编号:2141756

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2141756.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3ca58***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com