亚热带典型植被类型土壤水变化规律及影响机制研究
[Abstract]:Soil water is an important material basis for plant growth and survival. The study of forest soil water is of great significance to soil and water conservation, ecological protection and forestry management. The difference of forest vegetation types leads to the difference of soil bulk density, soil organic carbon amount, water stable aggregate, soil water saturation conductivity and so on. This study took the evergreen broad-leaved forest in Zhejiang Fengyang Mountain National Nature Reserve, the mixed forest of needle and broad-leaved forest, bamboo forest and tea garden as the research object. Through field investigation, simulation experiment, fixed observation, indoor analysis and so on, the paper studied the root perforation, soil characteristic factor and section structure of the tree. In the course of the study, in order to characterize the change characteristics of soil moisture content and the effect of tree root on the priority flow, the "time index of soil moisture content change", "soil water content change amplitude index", "root penetration ratio of fine root", "relative osmosis area of root system" and "root" were defined. The results are as follows: (1) the vegetation types have significant influence on soil properties and fine root biomass. With the increase of soil depth, the soil bulk density of 4 types of soil is on the rise, and the total organic carbon in soil decreases. The soil capillary porosity increases with the soil depth in the evergreen broad-leaved forest and the coniferous and broad-leaved mixed forest. The porosity of soil capillary in the bamboo forest and the tea garden was not significant. The soil non capillary porosity increased after the evergreen broad-leaved Lin Xian descended, and increased in the coniferous and broad-leaved mixed forest and bamboo forest, and decreased in the tea garden; the evergreen broad-leaved forest, the mixed forest and bamboo forest of the broad-leaved forest and the bamboo forest showed a declining trend in the tea garden. The content of large soil aggregate in the evergreen broad-leaved forest decreased first and then decreased in the coniferous broad-leaved forest. There was no significant difference between the bamboo forest and the tea garden. The soil medium aggregate content increased first in the evergreen broad-leaved forest and bamboo forest, and then increased in the coniferous broad-leaved forest and the tea garden. The soil small water stability was reduced. The aggregate content increased first in evergreen broad-leaved forest and tea garden, and increased gradually in the coniferous and broad-leaved mixed forest, but remained unchanged in the bamboo forest. The main influencing factors of the composition structure of water stable aggregates were soil total organic carbon, non capillary porosity, and fine root biomass. With the increase of soil depth, the soil saturated water conductivity was evergreen broad-leaved. There is an upward trend in the forest and bamboo forest, but in the tea garden, the difference is not significant, but in the tea garden, the soil saturated water stability aggregate and the medium water stable aggregate have great influence on the soil saturated water conductivity, and the proportion of the influence degree is 5, respectively. In 1.2%, 17%, 10.6%. (2) evergreen broad-leaved forests, soil moisture content in soil layer 0-10cm and 10-20cm is close, but lower than that in 20-30cm soil layer; the soil water content of soil layer is close to that of the mixed forest and bamboo forest. The water content of the soil layer in the tea garden is similar to that of the evergreen broad-leaved forest, but the water content of different soil layers in the tea garden is significant. In 2014, 2015, 2016, 4 plants were planted. The maximum water content of each soil layer appeared in the spring and summer season of 5-8 months, while the minimum water content of each soil layer appeared in the winter from November to January of the following year. The rainfall has a leading role in the change of soil moisture content, and the rainfall time is the most important positive effect factor affecting the time index of soil water content, "soil water content" The path coefficient between the rate of change time index and the rainfall time is 0.699, and the total rainfall is the most important negative effect factor affecting the change amplitude index of soil water content, and the path coefficient between the change amplitude index of soil moisture content and the total rainfall is 0.549, in addition, the above index increases with the increase of soil temperature. (3) (3) with the increase of rainfall intensity, the priority flow generated by the section, the priority flow generated by the dry root, and the priority flow generated by the fine roots of the 1mm and the 2mm root diameter increase gradually, and the increase is increased. The preferential flow generated by the root and the preferential flow generated by the 1mm and the root diameter of 2mm are greatly different, especially when the rainfall intensity is 240mm h~ (-1), the priority flow generated by the 10cm soil layer via the section, and the priority flow generated by the root diameter of the 1mm and the 2mm root diameter are obviously greater than 20cm and 30cm. Under the same rainfall intensity, compared with the 30cm soil layer, the difference between the preferential flow produced by the 10cm soil layer and the priority flow generated by the dry root can reach 10 times respectively. The difference of the priority flow produced by the fine root diameter of the 1mm and the 2mm root is 70 and 20 times respectively. The regularity is different. The rainfall intensity is 150 mm h~ (-1), 200 mm h~ (-1) and 240 mm h~ (-1), and there is a significant difference in the root penetration ratio of the 10 cm soil layer, the 1mm root and the root root penetration ratio of 2mm fine root, and the difference of the root penetration ratio of the different types of root roots is not significant, and the rainfall intensity is 100, 150, 200, respectively. Under the conditions of mm h~ (-1) and 240 mm h~ (-1), the difference of the relative permeation area of each root system is mainly reflected in the 10 cm soil layer, and the relative permeability area of the root system is not significant in the rest of the soil layer. Under the condition of the rainfall intensity of 150 mm h~ (-1), 200 mm h~, and 240 Now 10 cm soil layer. After analyzing the structural equilibrium equation model of "root penetration ratio" and "root penetration influence index", it is found that all factors can explain the 73.2% "root penetration influence index", in which the rainfall intensity and "root penetration ratio" have significant direct positive effects on the "root permeability influence index". (4) Under the conditions of artificial rainfall and natural rainfall, the phenomenon that the flow of soil priority flow is gradually reduced or even stopped is found. This study defines it as "soil embolism", referred to as "soil embolus", which is called "soil embolism elimination", referred to as "soil suppository elimination". With the extension of time, the total amount of soil preferential flow generated by the fine roots is gradually decreasing; the number of fine roots producing priority flow presents a downward trend in general; although the number of fine roots that produces the priority flow is generally decreasing, the fine roots that produce a partial first flow of flow will no longer produce an advantage over each observation. "Soil embolism" and "soil embolism elimination" occurred in the process of preferential flow generated by soil profiles, dry roots, 1mm and 2mm fine roots in the simulated rainfall conditions. Under the condition of rainfall intensity, soil embolism can be eliminated more easily under the condition of greater rainfall intensity.
【学位授予单位】:南京林业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S714
【相似文献】
相关期刊论文 前10条
1 王玉森,杜宏,黄保同,衡勇;西峡县不同植被类型截流效益研究[J];河南林业科技;2002年04期
2 郭涛;杨小波;李东海;吴庆书;曹士伟;孙波;;海南万宁神州半岛自然植被类型及其特征分析[J];林业资源管理;2008年02期
3 刘世梁;刘琦;王聪;杨珏婕;邓丽;;道路建设对区域植被类型的影响[J];应用生态学报;2013年05期
4 乔秉钧;寇有观;;浙江省山地丘陵区植被类型在遥感影象中的解译[J];中国草原;1983年02期
5 徐孟奇;;岳阳市植被类型与区划[J];湖南林业科技;1988年01期
6 黄承标;韦炳二;黎洁娟;;广西不同植被类型地表径流的研究[J];林业科学;1991年05期
7 张辑;刘晓英;;阳泉市王母垴山植被类型及组成特征调查分析[J];安徽农学通报(下半月刊);2009年20期
8 程积民;;程儿山植被类型及生产力的调查研究[J];宁夏农业科技;1985年04期
9 谷奉天;鲁北的贝沙岗与贝沙植被类型[J];植物生态学与地植物学学报;1990年03期
10 刘千枝;景电灌区植被类型对风沙流结构的影响[J];甘肃林业科技;1997年03期
相关会议论文 前10条
1 高贤明;王巍;华日刚;黄远超;欧阳彦如;;河南省连康山自然保护区植被类型的研究[A];生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集[C];1996年
2 陈灵芝;;中国植被类型多样性及其保护对策[A];生物多样性研究进展——首届全国生物多样性保护与持续利用研讨会论文集[C];1994年
3 李良厚;范定臣;王晶;;太行山南段石灰岩低山区植被类型布局优化研究[A];第二届全国水土保持生态修复学术研讨会论文集[C];2010年
4 高贤明;王巍;李庆康;马克平;陈灵芝;;中国暖温带中部山区主要自然植被类型[A];生物多样性保护与区域可持续发展——第四届全国生物多样性保护与持续利用研讨会论文集[C];2000年
5 彭代亮;刘良云;胡勇;刘玲玲;;基于GIMMS NDVI的亚欧大陆FPAR反演[A];第十七届中国遥感大会摘要集[C];2010年
6 杨华;杜国坚;陈卓梅;程诗明;陈友吾;;天荒坪镇生物多样性现状及保护对策[A];浙江省第三届生物多样性保护与可持续发展研讨会会议论文摘要集[C];2006年
7 王国明;;舟山海岛典型植被类型和群落结构特征[A];生态文明建设中的植物学:现在与未来——中国植物学会第十五届会员代表大会暨八十周年学术年会论文集——第2分会场:植物生态与环境保护[C];2013年
8 李毅;邵明安;;覆膜条件下土壤水、盐、热耦合迁移研究进展[A];《自然地理学与生态建设》论文集[C];2006年
9 陈海波;冶林茂;范玉兰;;三种土壤含水率测量方法的综合对比分析[A];中国气象学会2007年年会气象综合探测技术分会场论文集[C];2007年
10 洪昌红;黄本胜;邱静;王珍;杨静学;徐敬华;;幼生桉表层土壤含水率变化研究[A];中国水利学会2013学术年会论文集——S1水资源与水生态[C];2013年
相关重要报纸文章 前4条
1 铁铮;青年生态学家方精云当选中科院院士[N];中国绿色时报;2005年
2 李晓丽 贾达明;退耕后 还林还是还草?[N];人民政协报;2001年
3 刘锟锋;8月份降水较历年同期偏少53%[N];青岛日报;2009年
4 记者 胡馨婷;“江南清丽地”着力打造生态生产力[N];嘉兴日报;2008年
相关博士学位论文 前10条
1 郭晓平;亚热带典型植被类型土壤水变化规律及影响机制研究[D];南京林业大学;2017年
2 田琴;黄土丘陵区典型植被类型土壤微生物及异养呼吸特征[D];中国科学院教育部水土保持与生态环境研究中心;2017年
3 王小华;“秸轩集中沟埋还田”新型耕作技术土壤理化性状和有机碳研究[D];南京农业大学;2014年
4 姜建梅;基于滨海平原区浅层地下水对土壤水汽热耦合运移规律的影响研究[D];天津大学;2015年
5 付晓莉;水蚀风蚀交错区土壤水、碳、氮、磷分布及有关过程对植被类型的响应[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2010年
6 卜晓莉;武夷山不同海拔植被土壤有机质化学结构表征及降解[D];南京林业大学;2010年
7 李毅;覆膜条件下土壤水、盐、热耦合迁移试验研究[D];西安理工大学;2002年
8 武敏;辽西褐土沟灌侵蚀过程研究[D];沈阳农业大学;2015年
9 马玉莹;精确测量土壤水的体积置换方法研究[D];中国农业大学;2016年
10 成剑波;基于C/N调节的沼液灌溉土壤氮淋溶控制研究[D];西南大学;2016年
相关硕士学位论文 前10条
1 汪丽平;陕西省植被类型的空间分布[D];西北农林科技大学;2015年
2 石文静;青藏高原植被类型对土壤磷组分及矿化的影响[D];兰州大学;2015年
3 陈雨鸥;大连城山头海滨地貌国家级自然保护区高等植物多样性研究[D];辽宁师范大学;2015年
4 李菲;典型喀斯特山区不同植被类型土壤水分动态变化及其对植物光合作用的响应[D];贵州师范大学;2016年
5 赵卿;基于VTVDI的江西省干旱遥感监测研究[D];华中农业大学;2016年
6 吴林世;湘中湘南石灰岩区植被类型与土壤因子关系研究[D];中南林业科技大学;2016年
7 郭颖;青藏高原不同植被类型土壤磷分布特征及影响因素[D];天津师范大学;2017年
8 路莉;秦巴山区植被类型时空变化特征及驱动力研究[D];西北大学;2009年
9 吴雪仙;嘉陵江上游低山暴雨区不同植被类型的氮循环研究[D];四川农业大学;2007年
10 曾月娥;砒砂岩区典型地域植被类型空间配置研究[D];内蒙古农业大学;2013年
,本文编号:2150988
本文链接:https://www.wllwen.com/kejilunwen/nykj/2150988.html