常绿阔叶林改造为毛竹林对土壤呼吸组分与活性碳库的影响
[Abstract]:The change of land use change significantly affects soil carbon storage and soil respiration. The transformation of natural forest to artificial forest has brought about higher economic benefits. As a result of the change of the nature of vegetation and management mode, the species composition, litter characteristics, soil physicochemical and biological properties of the community also changed radically, which significantly affected the soil. The dynamic characteristics of carbon storage, bamboo is an important artificial forest resource in the south of China, accounting for about 70% of the area of bamboo forest in the country, and plays an important role in the carbon balance in the subtropical region. In recent years, in order to improve the economic benefits, many forest reforers have transformed the natural evergreen broad-leaved forest into Mao Zhulin, and used chemical fertilizer to increase the number of ploughing and to increase the number of ploughing and to increase the number of ploughing and to increase the number of ploughing. In addition to the intensive management measures such as weeds under forest, the change of land use and the implementation of related management measures will significantly affect the soil carbon process. However, the mechanism of its influence is still lacking in deep systematic study. The project is based on the natural evergreen broad-leaved forest and the reconstructed bamboo man Industrial forest, through a 1 year positioning test. The dynamic changes of the two kinds of forest soil respiration components (including soil total respiration, autotrophic respiration and heterotrophic respiration) and environmental factors (including soil temperature, soil water content, water soluble organic carbon content and microbial biomass content) were studied, and the transformation of evergreen broad-leaved forest to Mao Zhulin's soil respiration component and active carbon pool was explored. The relationship between soil respiration components and environmental impact factors was analyzed. The main results were as follows: (1) the soil respiration of evergreen broad-leaved forest and Phyllostachys pubescens plantation, autotrophic respiration and heterotrophic respiration showed significant seasonal variation. The maximum value of total soil respiration rate of two woodlands appeared in summer, The minimum value occurred in winter. The respiration rate of two woodland soils was the highest in summer and lowest in winter, while heterotrophic respiration was the highest in autumn and lowest in winter. (2) the annual cumulative CO2 emission of soil respiration in evergreen broad-leaved forest and bamboo forest was 31.60 and 37.25 t CO2hm-2 yr-1. evergreen broad-leaved forest soil total respiration rate, heterotrophic respiration rate, autotrophic respiration The annual mean absorption rate is 2.48,1.57 and 0.91 mol CO2 m-2 s-1, and the annual average soil respiration rate, heterotrophic respiration rate and autotrophic respiration rate of the bamboo forest are 2.93,1.92 and 1.01 Mu mol CO2 m-2 s-1. two, respectively, which show the proportion of heterotrophic respiration in soil respiration. The soil heterotrophic respiration accounted for 63.57% and 66.07% of the total soil respiration, and the proportion of the autotrophic respiration was 36.43% and the 33.93%. evergreen broad-leaved forest was transformed into the bamboo forest. The total soil respiration, heterotrophic respiration and autotrophic respiration increased by 17.87%, 22.51% and 9.78%. (3) evergreen broad-leaved forest and the water soluble organic carbon in the soil of 9.78%. (3). The content of (WSOC) and microbial biomass carbon (MBC) had obvious seasonal variation. The minimum value of WSOC content in evergreen broad-leaved forest and Mao Zhulin soil appeared in February, the highest value appeared in June. The soil MBC content of evergreen broad-leaved forest was higher in summer and autumn and lower in winter; the MBC content in soil of bamboo forest was higher in 10-12 month, lower in 7-8 months, the lowest value was out. In February, after the transformation of evergreen broad-leaved forest into bamboo forest, soil WSOC content increased by 10.26%, while soil MBC content decreased by 6.23%. (4) evergreen broad-leaved forest and Phyllostachys pubescens soil respiration each component was significantly correlated with soil temperature (5 cm) (P0.01). Evergreen broad-leaved forest and bamboo forest soil total respiration, heterotrophic respiration, autotrophic respiration The temperature sensitivity coefficient (Q10) of absorption rate was higher in 1.80,1.92,1.70 and 2.05,1.95,2.34. evergreen broad-leaved forests, while the sensitivity of autotrophic respiration to temperature was the highest. (5) the total respiration of soil in evergreen broad-leaved forest, heterotrophic respiration and soil WSOC content were significantly correlated (P0.01), and the bamboo forest soil was very significant (P0.01). There was significant correlation between soil total respiration, heterotrophic respiration and soil WSOC content (P0.05). There was no significant correlation between the autotrophic respiration of two woodland soils and the content of soil WSOC. There was no significant correlation between the two soil respiration components and the soil water content and the soil MBC content.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S714
【相似文献】
相关期刊论文 前10条
1 栾军伟;向成华;骆宗诗;宫渊波;;森林土壤呼吸研究进展[J];应用生态学报;2006年12期
2 方精云;王娓;;作为地下过程的土壤呼吸:我们理解了多少?[J];植物生态学报;2007年03期
3 苏永红;冯起;朱高峰;司建华;常宗强;;土壤呼吸与测定方法研究进展[J];中国沙漠;2008年01期
4 陈宝玉;王洪君;杨建;刘世荣;葛剑平;;土壤呼吸组分区分及其测定方法[J];东北林业大学学报;2009年01期
5 张智婷;宋新章;高宝嘉;;全球环境变化对森林土壤呼吸的影响[J];江西农业大学学报;2009年02期
6 杨玉盛,董彬,谢锦升,陈光水,高人,李灵,王小国,郭剑芬;森林土壤呼吸及其对全球变化的响应[J];生态学报;2004年03期
7 马秀梅,朱波 ,韩广轩,陈玉成,高美荣,张中杰;土壤呼吸研究进展[J];地球科学进展;2004年S1期
8 陈全胜,李凌浩,韩兴国,董云社,王智平,熊小刚,阎志丹;土壤呼吸对温度升高的适应[J];生态学报;2004年11期
9 常宗强,史作民,冯起;气温对祁连山不同植被状况土壤呼吸的影响[J];中国农业气象;2005年02期
10 张东秋,石培礼,张宪洲;土壤呼吸主要影响因素的研究进展[J];地球科学进展;2005年07期
相关会议论文 前10条
1 王小国;朱波;;森林土壤呼吸研究进展[A];第九届中国青年土壤科学工作者学术讨论会暨第四届中国青年植物营养与肥料科学工作者学术讨论会论文集[C];2004年
2 唐英平;;不同利用方式下的土壤呼吸温度敏感性研究[A];中国地理学会2007年学术年会论文摘要集[C];2007年
3 张凯;许晓静;徐小牛;;合肥城市绿地土壤呼吸初探[A];现代农业理论与实践——安徽现代农业博士科技论坛论文集[C];2007年
4 李洪建;严俊霞;汤亿;;气候变化的影响、适应与反馈——油松林地土壤呼吸与土壤温度和水分关系的定位研究[A];中国地理学会百年庆典学术论文摘要集[C];2009年
5 谢锦升;杨玉盛;陈光水;高人;杨智杰;郭剑芬;;植被恢复对严重侵蚀红壤碳吸存和土壤呼吸的影响[A];中国地理学会百年庆典学术论文摘要集[C];2009年
6 杨玉盛;陈光水;王小国;高人;李震;金钊;;中亚热带森林转换对土壤呼吸动态及通量的影响[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
7 唐洁;汤玉喜;吴敏;李永进;王胜;;洞庭湖区滩地不同土地利用类型的土壤呼吸动态[A];第二届中国林业学术大会——S10 林业与气候变化论文集[C];2009年
8 肖孔操;刘杏梅;吴建军;汪海珍;徐建明;;植物残体与土壤pH对农田土壤呼吸的影响研究[A];面向未来的土壤科学(下册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
9 赵敏;孔正红;;崇明岛人工林土壤呼吸研究初探[A];中国地理学会2006年学术年会论文摘要集[C];2006年
10 唐洁;汤玉喜;吴敏;李永进;王胜;;洞庭湖区滩地不同土地利用类型的土壤呼吸动态[A];第九届中国林业青年学术年会论文摘要集[C];2010年
相关重要报纸文章 前2条
1 本报记者 郭起豪;土壤呼吸里的“碳秘密”[N];中国气象报;2013年
2 周飞 申卫军;大气CO_(2)浓度影响土壤呼吸[N];广东科技报;2009年
相关博士学位论文 前10条
1 刘霞;寒温带冻土区森林—湿地生态系统土壤呼吸及其影响因子研究[D];东北林业大学;2015年
2 姜继韶;施氮和轮作对黄土高原旱塬区土壤温室气体排放的影响[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2015年
3 王一;模拟土壤增温和林内减雨对暖温带锐齿栎林土壤呼吸的影响及其微生物响应[D];中国林业科学研究院;2015年
4 雷蕾;马尾松林土壤呼吸与微生物对不同采伐方式的响应[D];中国林业科学研究院;2015年
5 李洪建;不同生态系统土壤呼吸与环境因子的关系研究[D];山西大学;2008年
6 时伟宇;黄土高原半干旱区两典型森林群落土壤呼吸动态特征研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2011年
7 雷海清;北亚热带毛竹材用林土壤呼吸特征研究[D];中国林业科学研究院;2012年
8 贾子毅;干旱区白刺荒漠生态系统土壤呼吸对增雨的响应[D];中国林业科学研究院;2011年
9 孔雨光;苏北海岸防护林地土壤呼吸及微生物量碳研究[D];南京林业大学;2009年
10 张鸽香;城市不同植被类型土壤呼吸与微生物量碳研究[D];南京林业大学;2011年
相关硕士学位论文 前10条
1 欧强;水位和增温对崇明东滩滨海围垦湿地土壤呼吸的影响[D];华东师范大学;2015年
2 吴畏;火干扰对小兴安岭两种典型林型土壤呼吸及其组分的短期影响[D];东北林业大学;2015年
3 吴杨周;模拟增温和降水减少对旱作农田土壤呼吸和N_2O通量的影响[D];南京信息工程大学;2015年
4 高伟峰;模拟氮沉对典型阔叶红松林土壤呼吸的影响[D];东北林业大学;2015年
5 戴衍晨;恩施典型烟田生态系统碳收支特征研究[D];中国农业科学院;2015年
6 张仁道;厢作免耕对稻田土壤呼吸与有机碳组分的影响[D];华中农业大学;2015年
7 杨淞;切根对亚热带4种林分土壤呼吸的影响[D];中南林业科技大学;2015年
8 王礼霄;基于MODIS数据模拟庞泉沟国家自然保护区的土壤呼吸空间格局[D];山西大学;2015年
9 高玉凤;庞泉沟自然保护区土壤呼吸的空间异质性研究[D];山西大学;2015年
10 哈斯珠拉;施氮对克氏针茅草原土壤呼吸的影响[D];内蒙古师范大学;2015年
,本文编号:2153677
本文链接:https://www.wllwen.com/kejilunwen/nykj/2153677.html