当前位置:主页 > 科技论文 > 农业技术论文 >

利用包络线消除法反演黄绵土水分含量

发布时间:2018-08-03 19:59
【摘要】:采集2014年陕西省乾县黄绵土土壤样本129个,风干过程中进行光谱反射率及水分含量测定,采用包络线消除法提取水分吸收特征参数,进行黄绵土水分含量反演。在对土壤水分含量和光谱吸收特征参数进行相关分析的基础上,运用一元线性回归、对数、指数、幂函数分析法,建立了土壤水分含量定量反演模型。结果表明,相关性较好的为最大吸收深度(D)、吸收总面积(A)、吸收峰右面积(R_A)和吸收峰左面积(L_A),1 900nm的光谱吸收特征参数相关性优于1 400nm。以D_(1 900)、R_(A1 900)为自变量建立的一元线性模型和A_(1 900)、A_(1 400)为自变量建立的对数模型是最佳预测模型,其建模和验证模型的决定系数R~2分别大于0.92和0.95,相对分析误差值大于4,预测均方根误差小于1.5%。
[Abstract]:129 soil samples were collected from Qianxian County of Shaanxi Province in 2014. Spectral reflectance and water content were measured in the process of air drying. The characteristic parameters of water absorption were extracted by envelope elimination method, and the moisture content of loess soil was inversed. Based on the correlation analysis of soil moisture content and spectral absorption characteristic parameters, a quantitative inversion model of soil moisture content was established by means of linear regression, logarithm, exponent and power function analysis. The results show that the correlation of the spectral absorption characteristic parameters of the maximum absorption depth (D), absorption area (A), absorption peak right area (Rass A) and the absorption peak left area (L A) 1 900nm is better than 1 400 nm. The linear model with D _ (1,900) R _ (A1 _ (900) as independent variable and the logarithmic model with A _ (1 900) A _ (1 400) as independent variables are the best prediction models. The determination coefficient Rn2 of the model is greater than 0.92 and 0.95, the relative error of analysis is greater than 4, and the root mean square error of prediction is less than 1.5.
【作者单位】: 河南科技大学农学院;西北农林科技大学资源环境学院;
【基金】:国家863计划(2013AA102401-2) 河南科技大学博士科研启动基金(13480074) 国家“十二五”科技支撑计划(2012BAH29B04-00) 河南省科技攻关计划(132102110210)~~
【分类号】:S152.7

【相似文献】

相关期刊论文 前1条

1 谢伯承,薛绪掌,刘伟东,王纪华,王国栋;基于包络线法对土壤光谱特征的提取及其分析[J];土壤学报;2005年01期



本文编号:2162847

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2162847.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c81ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com