斜纹夜蛾与棉铃虫化感基因鉴定及受体功能分析
[Abstract]:As the largest species and number of organisms on earth, insects have developed a highly sensitive olfactory receptor system during their long evolutionary process to sense complex odor compounds in the environment, thus completing important behavioral activities such as spouse-seeking, food-spawning, and escape from natural enemies. From the point of view of application, the long-term use of chemical pesticides in pest control in China has not only resulted in resistance to pests and reduced control effect, but also caused serious potential safety hazards to the environment and human life and caused special attention. It is urgent to develop more environmentally friendly and safer pest control techniques. Sexual attractants based on highly specific pheromone communication between the sexes of insects have been successfully applied to the control of some pests, but the overall effect is still not as expected, mainly because the olfactory mechanism of insect sex pheromones or other odorants is not well understood. Recognition involves multiple proteins, such as odor binding protein (OBP), chemosensory protein (CSP), odor receptor (OR), ionic receptor (IR), sensory neuron membrane protein (SNMP) and odor degrading enzyme (Odorant degrading enzym). Further study on the functions of these genes and their mechanisms in odor recognition will undoubtedly contribute to the development of more efficient pest control techniques. This study focused on the important agricultural pests Spodoptera litura and Helicoverpa armigera, combining molecular biology, bioinformatics and electricity. The main results are as follows: 1. Cloning, expression and function study of sex pheromone receptor gene of Spodoptera litura. According to the functional differences, OR can be divided into sex pheromone receptor (PR) and non-sex pheromone receptor (non-p receptor). Hermone receptor (non-PR OR). According to the four PR genes reported by Spodoptera littoralis, four PR gene fragments were cloned and identified from the antennae of male Spodoptera littoralis, and their full-length cDNA sequences were obtained by RACE, named SlituOR6 (Genbank login number: KC188666), SlituOR11 (KC1). The expression profiles of SlituOR13 (KC188668) and Slituor16 (KC188669) showed that four PRs were mainly expressed in antennae, SlituOR6 and Slituor13 were specifically expressed in antennae of male worms, and SlituOR11 and Slituor16 were highly expressed in antennae of male worms. The specific reactions of tuOR6 to secondary pheromone components Z9, E12-14:OAc (ECu (50) = = 1.99 *10 ~ (-6) M); SlituOR13 to secondary pheromone components Z9, E12-14:OAc (EC_ (50) = = 6.109 *10 ~ (-6) M) and Z9-14:OAc (EC_ (50) = = 1.109 (50) =1.184 10 ~ (-6) M) M) were relatively strong, but slight reactto major phercomponents Z9, E11 1 1 1 1 1 1 1 1 1 1-14:14:OAc (14:OA1: OA (50) =6: OA (50) =6: OA (EC_moth line The results provide an important basis for understanding the sensory mechanism of sex pheromone in Spodoptera litura. 2. Cloning, expression, localization and function of the common odor receptor gene of Spodoptera litura. We cloned four non-PR OR fragments from the antennae of Spodoptera litura by designing specific primers according to the reported OR sequence, and then obtained the full-length cDNA sequences by RACE, named SlituOR12 (Genbank login: JX999588), SlituOR19 (JX999589), SlituOR44 (JX99958). 7) and SlituOR51 (JX999586). Tissue expression profiles showed that the four ORs were expressed in the antennae. In situ hybridization experiments showed that SlituOR12 was expressed in the long hairy, short hairy and pyramidal sensilla, consistent with the olfactory function of sensilla. The results showed that SlituOR12 specifically recognized the plant volatile cis-3-hexenyl acetate (EC_ (50) = 3.393 *10-7M), SlituOR19 had a weak response to 4'-ethylacetophenone, but SlituOR44 and Slituor51 did not respond to all the detected odors. 3. Cloning and localization of the membrane protein gene of the sensory neurons of Spodoptera litura is a membrane protein, which has been proved to be essential in the sensory pheromone of Drosophila melanogaster. We cloned and identified two SNMP bases from the antennae of Spodoptera litura by PCR. The two SNMPs were named SlituSNMP1 (GenBank login number: KC571258) and SlituSNMP2 (KC571259). Evolutionary analysis showed that the two SNMPs belonged to SNMP1 and SNMP2 subgroups, respectively. In situ hybridization was used to localize the distribution of the two genes in the sensilla of male antennae. SlituSNMP1 was expressed in the neurons under the trichomes, while SlituSNMP2 was expressed in the surrounding columnar cells. In order to better understand the olfactory recognition mechanism of Helicoverpa armigera, we used Illumina HiSeqTM 2000 high-throughput sequencing platform to sequence the cotton bollworm antennae, and found 15 OR, 7 IR, 8. A total of 133 olfactory genes, including 60 OR, 19 IR, 2 SNMP, 34 OBP and 18 CSP, were identified in the antennae of Helicoverpa armigera, including 454 sequencing results reported in our laboratory. The identification of these genes laid an important foundation for the comprehensive elucidation of the olfactory mechanism of Helicoverpa armigera, and for the further adoption of sister species of tobacco. The comparative analysis of caterpillars provided important basis for revealing the mechanism of feeding differentiation between the two insects. 5. The expression profiles and functional analysis of odor receptor genes in Helicoverpa armigera were carried out on the basis of transcriptome sequencing and OR identification. The functions of these ORs were further studied. Firstly, all identified ORs were identified by RT-PCR. The results of tissue expression profiles showed that 28 OR genes were expressed in the antennae and antennae of adult worms, 2 were larvae-specific, and the rest were only expressed in the antennae of adult worms. Physical reactions showed that seven ORs (OR7, 8, 23, 26, 27, 34 and 43) had very narrow odor binding spectra and reacted only to 2-4 odor compounds; four ORs (OR31, 35, 40 and 42) had wide binding spectra and reacted to more than five odors; one did not react to the detected odor compounds. To sum up, eight OR (four PR and four non-PR OR) and two SNMPs were cloned from the antennae of Spodoptera litura by using molecular biology, bioinformatics and electrophysiological recording techniques. The tissue expression characteristics of these genes were determined and their functions were further identified. The results provide important basis for elucidating the olfactory molecular mechanism of sex pheromones and plant volatiles in Spodoptera litura and Helicoverpa armigera, and for designing and developing effective behavioral attractants and mating interference in moths. The agent provides support.
【学位授予单位】:南京农业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:S433.4
【相似文献】
相关期刊论文 前10条
1 吴双林;槟榔芋斜纹夜蛾的发生及防治[J];蔬菜;2000年05期
2 叶敬用;斜纹夜蛾实用防治技术[J];江西园艺;2002年03期
3 刘定忠;棉田斜纹夜蛾上升为害的主导原因浅析[J];江西棉花;2003年01期
4 吴传伟,赵敏,马立强;斜纹夜蛾为害梨树的新动向[J];中国植保导刊;2004年12期
5 钟菊莲 ,李虹 ,朱永胜;斜纹夜蛾在棉田暴发的原因及防治技术[J];江西棉花;2005年04期
6 万玉群,黄巧云,罗品忠;芋头生产上斜纹夜蛾的发生与防治[J];上海农业科技;2005年05期
7 黄巧云,常秋红,罗品忠;芋头斜纹夜蛾的发生与防治[J];现代农业科技;2005年04期
8 叶庆荣;;仙景芋斜纹夜蛾发生测报及防治技术[J];福建农业科技;2006年02期
9 李群;;警惕斜纹夜蛾暴发成灾[J];农药市场信息;2006年13期
10 杨乔良;;莲田斜纹夜蛾发生与防治[J];福建农业;2007年09期
相关会议论文 前10条
1 谢圣华;林珠凤;吉训聪;周传波;梁延坡;;挑治技术在斜纹夜蛾综合治理中的应用[A];粮食安全与植保科技创新[C];2009年
2 宋秀高;;斜纹夜蛾暴发的原因与防治技术[A];第十九届全国植保信息交流暨农药械交易会论文集[C];2003年
3 李国荣;王玉美;张胜昔;华金平;;斜纹夜蛾—不容忽视的棉田害虫[A];中国棉花学会2004年年会论文汇编[C];2004年
4 孙挺举;房德文;朱琴高;;斜纹夜蛾的发生规律与防治措施[A];中国蚕学会第七届二次理事会暨学术年会论文集[C];2005年
5 陈亮;李兵;浦冠勤;;斜纹夜蛾产生抗药性的原因及其防治对策[A];中国蚕学会桑树病虫害防治学术研讨会论文集[C];2008年
6 浦冠勤;姜德义;王军;;警惕斜纹夜蛾的发生与危害[A];中国蚕学会桑树病虫害防治学术研讨会论文集[C];2008年
7 刘德文;刘雄;谌超贤;;斜纹夜蛾暴发原因分析及防治[A];第二十一届全国农药械“双交会”论文集[C];2005年
8 李社平;向锦曾;;斜纹夜蛾微粒子虫的初步研究[A];北京昆虫学会成立四十周年学术讨论会论文摘要汇编[C];1990年
9 ;三叶草坪斜纹夜蛾的发生和防治策略[A];2006年江苏省病虫防治绿皮书[C];2006年
10 林莉;何成兴;戴勋;温丽娜;田育天;胡保文;常剑;吴文伟;赵文军;夏玉珍;徐益群;;烟草斜纹夜蛾生物学特性的研究[A];“创新驱动与现代植保”——中国植物保护学会第十一次全国会员代表大会暨2013年学术年会论文集[C];2013年
相关重要报纸文章 前10条
1 杭州蓝天园林生态科技股份有限公司 罗会生;斜纹夜蛾防治技术[N];中国花卉报;2014年
2 许红 彭传华;警惕斜纹夜蛾危害水生蔬菜[N];湖北科技报;2001年
3 镇江市蔬菜病虫测报站 高小文;四代斜纹夜蛾和豇豆煤霉病发生偏重[N];江苏农业科技报;2005年
4 肖爱辉 李雪梅;秋玉米须防斜纹夜蛾危害[N];湖南科技报;2007年
5 王金辉;如何防治斜纹夜蛾[N];湖南科技报;2000年
6 水清;斜纹夜蛾怎么治[N];江苏农业科技报;2005年
7 刘志强;棉田斜纹夜蛾为害特点与防治[N];山东科技报;2008年
8 辛集市植保站 陈书乔;注意查治棉、薯田斜纹夜蛾[N];河北科技报;2011年
9 李群;警惕斜纹夜蛾暴发成灾[N];云南科技报;2008年
10 广西玉林市三山园艺场 黄家南;抓紧防治玉米斜纹夜蛾[N];农民日报;2012年
相关博士学位论文 前6条
1 范蕊;斜纹夜蛾诱导后大豆叶片蛋白质组学分析及GmSAMS1的克隆和功能研究[D];南京农业大学;2010年
2 张进;斜纹夜蛾与棉铃虫化感基因鉴定及受体功能分析[D];南京农业大学;2015年
3 周嘉良;斜纹夜蛾耐药性和生殖对重金属铅胁迫的响应及分子机理[D];中山大学;2012年
4 黄水金;斜纹夜蛾的抗药性及其机理研究[D];南京农业大学;2006年
5 刘惠芬;斜纹夜蛾核型多角体病毒Ⅱ型基因组DNA复制原点及ORF63基因分析[D];山东农业大学;2012年
6 王洪涛;B型烟粉虱取食诱导的烟草对斜纹夜蛾生长发育和繁殖的影响及机制[D];山东农业大学;2011年
相关硕士学位论文 前10条
1 王纬华;湖南烟草有害动物调查及其测报和防治研究[D];湖南农业大学;2014年
2 娄琳琳;杀虫剂对斜纹夜蛾UDP-葡萄糖基转移酶活性的影响[D];南京农业大学;2014年
3 刘亮;寄主及寄主转换对斜纹夜蛾免疫及抗SLNPV能力的影响[D];扬州大学;2015年
4 毕洪论;斜纹夜蛾种群的遗传调控[D];福建农林大学;2016年
5 杜娟;斜纹夜蛾生物学及人工饲料的研究[D];东北农业大学;2016年
6 辛未一;两种寄主植物对斜纹夜蛾繁殖及卵黄原蛋白基因(Vg)表达的影响[D];扬州大学;2016年
7 李宾宾;秋甘蓝田斜纹夜蛾种群动态及时空生态位研究[D];安徽农业大学;2015年
8 杨海燕;水分胁迫和营养对斜纹夜蛾的影响及其机制初探[D];扬州大学;2008年
9 刘志才;广东佛山地区斜纹夜蛾发生规律及防治研究[D];湖南农业大学;2005年
10 许冬;斜纹夜蛾取食诱导棉花抑制性消减文库的构建及初步分析[D];中国农业科学院;2008年
,本文编号:2175856
本文链接:https://www.wllwen.com/kejilunwen/nykj/2175856.html