当前位置:主页 > 科技论文 > 农业技术论文 >

施有机肥对土壤及生菜中耐药非致病菌及耐药基因的影响研究

发布时间:2018-08-26 21:19
【摘要】:由于抗生素的过量使用,养殖环境及禽畜粪便中存在大量抗生素残留及耐药菌和耐药基因。粪便被还田用于农业种植中,可能成为土壤中耐药菌及耐药基因的来源之一。细菌耐药及耐药基因已成为危害人类健康的环境及食品问题。粪肥和土壤作为耐药菌和耐药基因的储存环境和传播介质之一,其对耐药菌和耐药基因在环境中的传播有重要影响。蔬菜是人类的基本生活食品,其中的耐药菌及耐药基因会通过食物链影响人类的健康安全。而非致病菌是耐药基因的受体、供体和储存中间体,因其数量众多,占微生物生态系统中的大部分,在其中发生耐药基因的水平迁移(HGT)事件的频率可能更高,因此在耐药基因的迁移中扮演了重要角色。因此开展施用有机肥对土壤及蔬菜中耐药非致病菌及耐药基因的影响研究,以及其中耐药基因传播风险的研究十分必要,可为农业环境及农产品中抗生素耐药菌的控制策略的制定提供科学依据。本研究以土壤及生菜为研究对象,通过室内盆栽实验、菌落培养、平板计数的实验方法,研究分析施用有机肥对土壤及生菜中对头孢噻肟(CTX)、红霉素(ERM)、磺胺(SUL)、四环素(TET)、强力霉素(DOX)、环丙沙星(CIP)6种抗生素耐药性的非致病细菌数目和多重耐药表型的影响;通过基因克隆构建耐药基因库,耐药基因筛查和测序研究施有机肥对土壤及生菜中整合酶基因intI和9种耐药基因的丰度、组合类型,对含多重耐药基因菌种类型的影响;最后采用质粒提取及聚合酶链式反应(PCR)分析了耐药基因的潜在传播风险。主要结论如下:(1)施肥后明显增加了土壤中CTX~r、SUL~r、ERM~r、TET~r、CiP~r数目,DOX~r在对照组和施肥组中均未检出。施肥后15 d、30 d和45 d,施肥组CTX1·的数量均大于其他耐药非致病菌1-2个数量级,数量达到10~8CFU·g~(-1),DOX~r最少,数量均为10~5CFU·g~(-1)。除DOX~r外,随生菜的生长,施肥均增加土壤中所研究的其他5种耐药非致病菌(CTX~r、SUL~r、ERM~r、TET~r、CIP~r)的数目,但对其影响逐渐减少。施肥15d和30d时,对土壤中CTX~r、TET~r、CIP~r、DOX~r数目的影响显著,其中对CTX~r、CIP~r数目影响极显著,ERM~r在30d差异显著,施肥45 d时,即生菜采摘期时,施肥仅对土壤中CIP~r数目影响显著,对其他5种耐药非致病菌影响均不显著。施肥后土壤中多重耐药菌比例增加,不同时间点多重耐药菌比例均有不同程度的提高。(2)施肥会使生菜中的耐药非致病菌的数目增加。无论施肥与否,除DOX~r在生菜中均未检出外,生菜中其他5种耐药非致病菌普遍存在。随着种植时间的增长,施肥对土壤中SUL~r的影响逐渐增加,对CIP~r数目的影响先增加后减少,TET~r和CTX~r数目的影响逐渐减少,对ERM~r数目无明显影响。施肥对CTX~r数目在15 d时影响最大,对TET~r在15 d和30 d时影响显著,且15 d影响极显著,施肥对其余耐药非致病菌在15 d和30 d均无显著影响,施肥45 d时,即在生菜采摘期45 d时,施肥对其中的耐药非致病菌数目影响不显著。施有机肥对生菜中耐药菌的多重耐药性没有太大的影响,但是可以看出即使不施肥,生菜中也存在多重耐药菌。(3)intI在土壤和生菜中普遍存在,和施肥与否无关。施肥后增加了土壤和生菜中intI、tet和sul基因的检出率。土壤与生菜中不同tet基因类型变化均不同,sul基因中,检出率差异性大小均为sul1sul2。(4)施肥后,土壤中tet基因中tetC检出率明显增加,其次为tetG、tetB、tetE、tetA、tetM,tetL基本无变化。施肥对土壤中tet基因的影响在30 d最大,在45 d基本无影响。(5)施肥后,生菜中tet基因中tetG检出率明显增加,其次为tetM、tetB,施肥组tetL和tetA检出率小于对照组,tetC均未检出。随着时间的增长,施肥对生菜中tet基因的影响减弱甚至减少其中tet基因检出率,对生菜中sul基因的影响增强。(6)施肥可以增加土壤和生菜中含多重耐药基因的菌株和intI基因的检出率,可能一定程度上增加抗性基因的水平迁移风险。(7)施有机肥均可增加土壤和生菜中多重耐药菌株的菌种类型,且可以改变生菜多重耐药基因组合的类型和丰度。施肥土壤与对照土壤中的含多重耐药基因的菌种均主要为假单胞菌(Pseudomonas sp.)、短波单胞菌(Brevibacterium sp.)节杆菌(Arthrobacter sp.)。对照组与施肥组生菜中优势多重耐药菌株均为假单胞菌(Pseiudomonas sp.)和短波单胞菌(Brevibacterium sp.),施肥引入较多的菌株为节杆菌(Arthrobacter sp.)。(8)在所选取的多重耐药非致病菌的质粒上均检出intI基因及sul、tet耐药基因,其中土壤及生菜中intI在质粒上检出率100%。因此土壤及生菜中的耐药基因可能具有水平传播风险,还需要对这些质粒的特点进行进一步研究。
[Abstract]:Due to the overuse of antibiotics, a large number of antibiotic-resistant bacteria and genes exist in the farming environment and livestock excrement. Feces returned to farming may become one of the sources of drug-resistant bacteria and genes in soil. Bacterial resistance and genes of drug resistance have become environmental and food problems that endanger human health. Vegetables are the basic food for human life, in which drug-resistant bacteria and drug-resistant genes affect human health and safety through the food chain. Non-pathogenic bacteria are receptors for drug-resistant genes. Horizontal migration of drug-resistant genes (HGT) may occur more frequently in microbial ecosystems because of the large number of donor and storage intermediates, which play an important role in the migration of drug-resistant genes. It is necessary to study the influence of antibiotic resistance genes and the transmission risk of antibiotic resistance genes, which can provide scientific basis for the formulation of control strategies of antibiotic-resistant bacteria in agricultural environment and agricultural products. Effects of fertilizers on the number and multidrug resistance phenotypes of cefotaxime (CTX), erythromycin (ERM), sulfonamide (SUL), tetracycline (TET), doxycycline (DOX) and ciprofloxacin (CIP) resistant non-pathogenic bacteria in soils and lettuce; Resistance gene pool was constructed by gene cloning, resistance gene screening and sequencing. Finally, Plasmid Extraction and polymerase chain reaction (PCR) were used to analyze the potential transmission risk of drug-resistant genes. The main conclusions were as follows: (1) Fertilization significantly increased the number of CTX~r, SUL~r, ERM~r, TET~r and CiP~r in soil. The number of CTX1 ~ (-1) in the fertilizer group was higher than that in the other non-pathogenic bacteria (1-2 orders of magnitude) 15 days, 30 days and 45 days after fertilization. The number of CTX1 ~ (-1) in the fertilizer group was 10-8 CFU ~ (-1), and the number of DOX ~ (-1) was the smallest, all of which were 10-5 CFU (-1). Except DOX ~ (-1), the other five Non-drug-resistant non-pathogenic bacteria in the soil were increased with the growth of lettuce. The number of pathogenic bacteria (CTX~r, SUL~r, ERM~r, TET~r, CIP~r) decreased gradually, but the effect of Fertilization on the number of CTX~r, TET~r, CIP~r and DOX~r in soil was significant at 15 and 30 days of fertilization, especially on the number of CTX~r and CIP~r. ERM~r had significant difference at 30 days of fertilization, that is, at 45 days of lettuce picking stage, fertilization only had significant effect on the number of CIP~r in soil. (2) Fertilization could increase the number of drug-resistant non-pathogenic bacteria in lettuce. Except DOX~r, there were no other 5 species in lettuce except DOX~r. With the increase of planting time, the effect of Fertilization on the number of SUL~r in soil increases gradually, and then decreases. The effect of Fertilization on the number of TET~r and CTX~r decreases gradually, but has no significant effect on the number of ERM~r. Fertilization had no significant effect on the number of drug-resistant non-pathogenic bacteria on the 15th day and 30th day. Fertilization had no significant effect on the number of drug-resistant non-pathogenic bacteria on the 45th day, that is, on the 45th day of picking period. Multidrug-resistant bacteria also existed in lettuce. (3) InI was ubiquitous in soil and lettuce, and had nothing to do with fertilization. After fertilization, the detection rate of intI, tet and sul genes in soil and lettuce increased. The detection rate of tetC in lettuce was significantly increased, followed by tetG, tetB, tetE, tetA, tetM and tetL. Fertilization had the greatest effect on the Tet gene in soil at 30 days, but had no effect on it at 45 days. (5) After fertilization, the detection rate of tetG in lettuce was significantly increased, followed by tetM, tetB. The detection rate of tetL and tetA in fertilization group was lower than that in control group, and tetC was not detected. (6) Fertilization can increase the detection rate of strains and intI genes containing multiple resistance genes in soil and lettuce, which may increase the risk of horizontal migration of resistance genes to a certain extent. (2) Fertilization can increase the detection rate of strains and intI genes containing multiple resistance genes in lettuce. 7) Application of organic manure could increase the types of multi-drug resistant bacteria in soil and lettuce, and could change the type and abundance of multi-drug resistant genomic combination in lettuce. The dominant multidrug-resistant strains were Pseudomonas sp. and Brevibacterium sp. in the control group and the fertilization group. Arthrobacter sp. (8) InI gene and sul, tet resistance gene were detected in the plasmids of the selected multidrug-resistant non-pathogenic bacteria. The detection rate of intI in medium soil and lettuce was 100%. Therefore, the risk of horizontal transmission of drug-resistant genes in soil and lettuce may exist, and further study on the characteristics of these plasmids is needed.
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S141

【相似文献】

相关期刊论文 前10条

1 王瑞旋;耿玉静;王江勇;冯娟;李国平;;水产致病菌耐药基因的研究[J];海洋环境科学;2012年03期

2 路浩;王兴龙;李晓艳;雷连成;鲁景艳;冯新;万家余;李忠义;杨冬;;基因芯片检测细菌耐药基因[J];中国兽医学报;2008年02期

3 王利勤;王晶钰;董睿;张三东;江跃德;陈占莉;李志良;;鸡源致病性大肠埃希菌中氨基糖苷类抗生素耐药基因的检测[J];动物医学进展;2012年07期

4 李英霞;郭大伟;李洪恩;姚杰;苏利娅;王丽平;;红霉素与四环素耐药基因在猪链球菌临床分离株中的检测[J];畜牧与兽医;2009年10期

5 芮萍;马增军;陈翠珍;段玲欣;郭玉芳;房海;;猪源链球菌对大环内酯类主要耐药基因的检测[J];中国兽医学报;2011年06期

6 王冠玉;谭艾娟;吕世明;张剑勇;吴宗芬;;贵州猪 鸡源大肠杆菌质粒介导喹诺酮类耐药基因调查[J];中国兽医杂志;2014年04期

7 金鑫;张文广;张燕军;苏蕊;王瑞军;李金泉;;饲喂不同抗生素对肉牛废弃粪便中四环素耐药基因数量及持久性的影响[J];中国畜牧兽医;2012年10期

8 王丽平,陆承平;动物源性链球菌红霉素耐药基因的分布[J];畜牧兽医学报;2005年09期

9 柳林;张文娟;田召芳;;鸡致病性大肠杆菌的分离鉴定及耐药基因的检测[J];中国动物检疫;2010年07期

10 李杨;鞠玉琳;李佳佳;;中药复方制剂连黄对沙门氏菌耐药基因aph(3′)-Ⅱa mRNA表达水平的影响[J];湖北农业科学;2008年08期

相关会议论文 前10条

1 孔繁德;陆承平;彭海滨;徐淑菲;陈琼;;多重PCR技术检测沙门菌两种四环素耐药基因[A];第二届全国人畜共患病学术研讨会论文集[C];2008年

2 石燕华;李昌崇;;肺炎链球菌对β-内酰胺类及大环内酯类抗生素耐药基因的研究进展[A];第六届江浙沪儿科学术会议暨儿科学基础与临床研究进展学术班论文汇编[C];2009年

3 金先庆;李映良;向丽;李长春;罗庆;梁绍燕;宿玉玺;郑改焕;;五种耐药基因在15种332例儿童恶性肿瘤组织中表达的特点及临床应用[A];中国抗癌协会第七届全国小儿肿瘤学术会议论文汇编[C];2007年

4 莫非;;耐甲氧西林金黄色葡萄球菌耐药基因及消毒剂耐药相关基因的检测[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年

5 王晶;韩丽霞;;耐亚胺培南铜绿假单胞菌的耐药基因研究[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年

6 王凤玲;冯秀河;刘静;张竟宇;;耐甲氧西林金黄色葡萄球菌耐药基因及致病毒素基因的研究[A];第五届全国中医药免疫学术研讨会——暨环境·免疫与肿瘤防治综合交叉会议论文汇编[C];2009年

7 吕火祥;麇祖煌;胡庆丰;沈蓓琼;;泛耐药产酸克雷伯菌的耐药基因研究[A];2007年浙江省医学检验学学术年会论文汇编[C];2007年

8 雷永良;王晓光;陈秀英;;丽水市结核分枝杆菌分离株5种耐药基因突变特点分析[A];2011年浙江省医学会医学病毒学分会、医学微生物与免疫学分会学术年会论文汇编[C];2011年

9 李晨;;耐甲氧西林金黄色葡萄球菌耐药性及耐药基因研究[A];中国医院协会第十四届全国医院感染管理学术年会资料汇编[C];2007年

10 胡红兵;熊宝华;夏维;王军;康世秀;;新生儿甲氧西林耐药凝固酶阴性葡萄球菌血液感染分离株耐药基因研究[A];第六届全国抗菌药物临床药理学术会议论文集[C];2006年

相关重要报纸文章 前10条

1 记者 徐志勇;深圳发现两个新型耐药基因[N];广东科技报;2007年

2 王其玲 李水根;抗生素新耐药基因被捕获[N];健康报;2003年

3 段军军 熊学莉;“探访”我国第一条肿瘤耐药基因[N];解放军报;2002年

4 本报记者 齐芳;人体肠道菌群耐药基因研究获新突破[N];光明日报;2013年

5 记者 鲍文娟邋通讯员 帅菲斐;深一医生全球率先发现两新耐药基因[N];广州日报;2007年

6 易运文;深圳医生全球首次发现耐药基因[N];光明日报;2007年

7 陈英云 乔蕤琳;我省专家首次确立控制耐药基因表达研究思路[N];黑龙江经济报;2010年

8 记者 陈枫;超级细菌蔓延?实为“耐药基因”![N];南方日报;2010年

9 记者 郭静 通讯员 郝黎 张丹娜;肺癌耐药基因找到了[N];广东科技报;2010年

10 张田勘;滥用抗生素让环境几度呻吟[N];中国绿色时报;2003年

相关博士学位论文 前10条

1 李德喜;恶唑烷酮类耐药基因cfr和optrA在猪源MRSA和CoNS中流行及传播机制的研究[D];中国农业大学;2016年

2 熊文广;抗生素耐药基因在动物肠道中的排布和在微环境中的消减规律[D];华南农业大学;2016年

3 陈军;生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D];中国科学院大学(中国科学院广州地球化学研究所);2017年

4 鲁曦;低剂量抗生素刺激条件下耐药基因水平传播的机制研究[D];华南理工大学;2012年

5 付佳伦;细菌耐药基因在斑马鱼体内定植、转移规律及机制研究[D];中国人民解放军军事医学科学院;2017年

6 鲁玉侠;食源微生物耐药基因水平传播抑制研究[D];华南理工大学;2010年

7 王晶;慢性阻塞性肺疾病急性加重多中心病原及耐药基因分子流行病学调查[D];中国人民解放军医学院;2014年

8 毛锦龙;Ⅱ-Ⅲ级星型细胞瘤体外诱导耐药细胞—干细胞基因及耐药基因研究[D];北京协和医学院;2010年

9 叶蕾;广州市水产养殖品中耐药共生菌分布及耐药基因传播机制的研究[D];华南理工大学;2012年

10 瞿婷婷;多重耐药肠球菌耐药基因筛选及传播机制研究[D];浙江大学;2007年

相关硕士学位论文 前10条

1 何红美;2014年石家庄地区围产期妇女B族链球菌的耐药性及其耐药基因的研究[D];河北医科大学;2015年

2 王佳Z,

本文编号:2206185


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2206185.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户83d40***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com