作物根区土壤水分垂向调控与蒸发蒸腾量估算
[Abstract]:Local root water stress can regulate crop yield and quality and improve water use efficiency. The realization of water saving effect needs spatial distribution difference of soil water in horizontal or vertical. Soil moisture is an important factor affecting crop evapotranspiration, and its spatial distribution will also affect crop evapotranspiration estimation. In this study, spring wheat in Shiyang River Basin was used to control the upper and lower limits of irrigation and the depth of wet layer in different growth stages to realize vertical regulation of soil moisture in root zone, and its effect was discussed. Based on RZWQM model, the upper limit of irrigation and the depth of wet layer in different growth periods were optimized to maximize the benefit of water saving. The effect of spatial distribution of soil moisture on crop evapotranspiration estimation caused by the difference of irrigation amount in spring maize in Shiyang River Basin was studied. The main achievements of this paper are as follows: (1) the soil moisture distribution and crop root distribution can be regulated by controlling the depth of the wet layer in different growth stages, and the vertical control measures are mainly in the 0~60cm soil layer. The soil moisture content and root length density of 40~60cm soil were the most significantly affected. There was little difference in yield among different irrigation treatments, but there was great difference in the amount of irrigation needed and there was water saving space. (2) RZWQM model could accurately simulate the soil moisture movement and crop growth process of spring wheat in Shiyang River Basin. It can be used to optimize irrigation system. The effects of upper limit of irrigation and depth of wet layer in different growth stages on grain yield, irrigation amount, irrigation water utilization efficiency and irrigation times of spring wheat were simulated by using the model. The results showed that the effect of irrigation upper limit on irrigation quantity was much greater than on yield, and the decrease of irrigation upper limit would increase irrigation times and increase wheat yield. The aim of saving water and increasing yield can be achieved by regulating irrigation upper limit and the depth of wet layer in each growth stage. It is suggested that the irrigation schedule of spring wheat in this area should be as follows: the upper limit of irrigation water should be chosen as 80% field water holding capacity. The planned wet layer depth of seedling stage to jointing stage is 30 cm, that of jointing stage to heading stage is 60 cm, that of heading stage to filling stage is 50 cm, and that of planned wet layer is 70 cm at filling stage and mature stage. (3) under different irrigation treatments, the depth of wet layer is 70 cm. The estimation accuracy of crop evapotranspiration is quite different. With the increase of irrigation amount, the estimation accuracy of crop evapotranspiration was decreased, and the estimation error of crop evapotranspiration under high irrigation treatment was -14.13%. The water content of the upper layer of the root zone is closely related to the soil water stress. The average water content of the soil layer and above is replaced by the average value of the water content of the whole root zone for the calculation of soil water stress coefficient. The calculation accuracy of crop evapotranspiration under high irrigation treatment can be improved effectively, and the estimation error can be reduced to -9.97, and the crop evapotranspiration under low irrigation treatment can be estimated more accurately.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S152.7;S311
【相似文献】
中国期刊全文数据库 前10条
1 杨映才;;作物蒸发蒸腾量简析[J];甘肃农业;2006年11期
2 陈佩英;殷广亚;宋玉民;甄军英;李伟;孙岩;;临颍参考作物蒸发蒸腾量计算及对比分析[J];河南气象;2006年04期
3 聂振平;汤波;;作物蒸发蒸腾量测定与估算方法综述[J];安徽农学通报;2007年02期
4 冀瑞锋;;作物蒸发蒸腾量研究[J];科技情报开发与经济;2009年10期
5 康绍忠;邵明安;;作物蒸发蒸腾量的计算方法研究[J];中国科学院水利部西北水土保持研究所集刊(SPAC中水分运行与模拟研究专集);1991年01期
6 南纪琴;肖俊夫;刘战东;陶国通;苏星;;河南地区不同年代不同季节参考作物蒸发蒸腾量研究[J];灌溉排水学报;2013年05期
7 王卫华;邢旭光;吴忠东;蹇洪胜;;作物蒸发蒸腾量计算方法研究与展望[J];安徽农业科学;2013年28期
8 彭世彰,徐俊增;参考作物蒸发蒸腾量计算方法的应用比较[J];灌溉排水学报;2004年06期
9 吴宏霞;彭世彰;徐俊增;;参考作物蒸发蒸腾量计算简化方法[J];中国农学通报;2005年12期
10 李彦,陈祖森,张保,王建山;参考作物蒸发蒸腾量的多元线性回归模型研究[J];新疆农业大学学报;2005年01期
中国重要会议论文全文数据库 前6条
1 徐俊增;彭世彰;张瑞美;吴宏霞;;参考作物蒸发蒸腾量随纬度与海拔的变化规律研究[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第二分册[C];2005年
2 孙庆宇;佟玲;张宝忠;;京津冀地区多种参考作物蒸发蒸腾量计算方法适用性探索[A];现代节水高效农业与生态灌区建设(上)[C];2010年
3 佟玲;康绍忠;杨秀英;粟晓玲;;石羊河流域参考作物蒸发蒸腾量空间分布规律的研究[A];中国农业工程学会农业水土工程专业委员会第三届学术研讨会论文集[C];2004年
4 霍再林;史海滨;李为萍;佟长福;徐冰;;参考作物蒸发蒸腾量的人工神经网络模型研究[A];中国农业工程学会农业水土工程专业委员会第三届学术研讨会论文集[C];2004年
5 张晓涛;康绍忠;;基于SEBAL模型的民勤绿洲蒸发蒸腾量的遥感估算[A];现代节水高效农业与生态灌区建设(上)[C];2010年
6 龚道枝;康绍忠;张建华;姚立民;;苹果树蒸发蒸腾量的测定和计算[A];中国农业工程学会农业水土工程专业委员会第三届学术研讨会论文集[C];2004年
中国博士学位论文全文数据库 前3条
1 杜少卿;西北旱区分根交替灌溉苹果树水分利用及蒸发蒸腾量估算研究[D];中国农业大学;2017年
2 吴尧;科尔沁沙丘—草甸相间地区植被蒸发蒸腾量变化规律研究[D];内蒙古农业大学;2014年
3 苏春宏;参考作物蒸发蒸腾量(ET_0)的初步检验实验及输入因子的响应分析研究[D];内蒙古农业大学;2006年
中国硕士学位论文全文数据库 前10条
1 薛璐;陕西关中地区ET0时空变化及简化计算方法的适用性[D];西北农林科技大学;2015年
2 刘文艳;参考作物蒸发蒸腾量主成分和多重分形分析[D];西北农林科技大学;2016年
3 宇宙;赤峰市膜下滴灌玉米蒸发蒸腾量及灌水量空间分布研究[D];内蒙古师范大学;2016年
4 赵红光;自然和人工条件下作物蒸发蒸腾量(ET)的研究[D];太原理工大学;2017年
5 战国隆;参考作物蒸发蒸腾量简化计算与预测模型研究[D];西北农林科技大学;2010年
6 张晓涛;区域蒸发蒸腾量的遥感估算[D];西北农林科技大学;2006年
7 康燕霞;波文比和蒸渗仪测量作物蒸发蒸腾量的试验研究[D];西北农林科技大学;2006年
8 程玉菲;黑河干流中游平原作物蒸发蒸腾量时空分布研究[D];兰州大学;2007年
9 佟玲;石羊河流域作物蒸发蒸腾量时空分异规律的研究[D];西北农林科技大学;2004年
10 樊引琴;作物蒸发蒸腾量的测定与作物需水量计算方法的研究[D];西北农林科技大学;2001年
,本文编号:2274645
本文链接:https://www.wllwen.com/kejilunwen/nykj/2274645.html