基于多重分形特征的作物叶片图像分割技术的研究
[Abstract]:Leaf is an important organ and the main tissue of nutrient uptake. Its morphology and surface texture can characterize the growth of crops and the situation of pests and diseases. At the same time, the morphological change of leaf is less than that of root and stem, so its texture feature is the ideal object to explore the crop growth condition, but there are few effective tools to describe the texture feature at present, which is a difficult problem to be solved. Multifractal theory in fractal is an important method to describe texture features of images. It has been well applied in the field of parallel image processing. In this paper, according to the singularity of leaf image, multifractal theory is used to describe the multifractal feature of leaf grayscale image, and the problem of crop image segmentation is studied by using these features. The purpose of this paper is to provide the theoretical basis for the nondestructive diagnosis system of crop leaf deficiency and disease through machine intelligence. 1. The method of extracting the leaf texture feature of rape based on the multifractal of local capacity measure is realized, and the image segmentation technology is further realized. The experimental results show that the method is very sensitive to the edge, vein and disease area of the leaf, and it can segment the diseased area well. For different disease images of leaves, the effect of multifractal spectrum segmentation based on different capacity measure is different, but generally speaking, The multifractal spectrum segmentation method based on capacity measure can accurately detect the key areas of disease. 2. On the basis of undulating average analysis method, a new two-dimensional multifractal detrend wave average analysis method is proposed, and the segmentation experiment of leaf image with lack of prime is made. The new method was applied to the potassium deficiency and magnesium deficiency leaf segmentation of rape to verify the effectiveness of the method.
【学位授予单位】:湖南农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S126;TP391.41
【参考文献】
相关期刊论文 前10条
1 赵莹;胡静;黎明;迟冬祥;;基于分形维数的图像纹理特征表示方法[J];上海电机学院学报;2011年01期
2 龚红菊;於海明;姬长英;;基于分形理论的水稻单产计算机视觉预测技术[J];农业机械学报;2010年08期
3 金春兰;黄华;刘圹彬;;基于多重分形的医学图像分割方法[J];中国组织工程研究与临床康复;2010年09期
4 刘元永;罗晓曙;陈全斌;吴雷;;多重分形谱在叶片图像处理中的应用[J];计算机工程与应用;2008年28期
5 赵莹;高隽;陈果;冯文刚;;一种基于分形理论的多尺度多方向纹理特征提取方法[J];仪器仪表学报;2008年04期
6 韩书霞;戚大伟;于雷;;基于多重分形理论的原木CT腐朽图像分析与处理[J];森林工程;2007年05期
7 肖亮,吴慧中,韦志辉;图像多重分形测度的速降函数投影方法与图像奇异性分析[J];电子与信息学报;2005年08期
8 彭复员,周麟,阎旭光;基于相关的多重分形奇异性分析的红外弱目标检测[J];红外与毫米波学报;2004年01期
9 李会方,俞卞章;一种基于多重分形新特征的图像分割算法[J];光学精密工程;2003年06期
10 赵健,宋祖勋,俞卞章;基于多重分形分析的SAR图像消噪增强研究[J];西北工业大学学报;2003年01期
相关博士学位论文 前4条
1 王访;作物诊断的叶片图像多重分形方法与建模[D];湖南农业大学;2013年
2 陈志军;多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用[D];中国地质大学;2007年
3 李会方;多重分形理论及其在图象处理中应用的研究[D];西北工业大学;2004年
4 李锰;地貌与地震形变场分形与多重分形特征研究[D];中国地震局地球物理研究所;2002年
相关硕士学位论文 前1条
1 王瑞;多重分形及其在图像识别中的应用研究[D];西北大学;2010年
,本文编号:2322236
本文链接:https://www.wllwen.com/kejilunwen/nykj/2322236.html