基于SiB2模型的土壤水分降尺度指标的适用性研究
[Abstract]:Soil moisture is one of the core variables in the surface process, which strongly affects the energy and water exchange between the landing surface, vegetation and atmosphere. At present, the spatial resolution of soil moisture products based on spaceborne passive microwave remote sensing is generally coarse (25~40km), which can not meet the needs of hydrometeorology, eco-hydrological simulation and water resources management on watershed scale. At present, the downscaling of soil moisture is one of the more feasible solutions. Through the study of different downscaling indexes, the suitable conditions of each downscaling index were analyzed and determined, which laid a foundation for the downscaling study of soil moisture. From May 1 to September 30, 2013, the SiB2 model was used to simulate soil moisture, soil surface temperature, vegetation canopy temperature and surface evapotranspiration, respectively, using the meteorological data of Daman super station in the artificial oasis experimental area of Heihe River from May 1 to September 30, 2013. The potential evapotranspiration of soil surface was calculated by Penman-Monteith formula. Using SiB2 simulation results and P-M formula to estimate the results of soil moisture downscaling commonly used: apparent thermal inertia, (ATI), soil evaporation, (E), soil evaporation / actual evapotranspiration (E/ETa), evaporation ratio (EF), Actual evaporation ratio (AEF). Through the analysis of the correlation between downscaling index and soil moisture, it can be seen that there is a good correlation between the five indexes and soil moisture in the whole growing season of vegetation. The correlation between ATI,E,E/ETa and EF and soil moisture decreased with the increase of soil depth. The correlation between AEF and soil moisture in the root zone is the best, which can better reflect the dynamic change of soil water in the root zone. The order of correlation between each downgrade index and soil moisture is as follows: 2 cm: ETaEFEAEFATI 10 cm: AEFEFE / ETaEATI 80 cm: EFAEFE / ETaEATI.
【作者单位】: 中国科学院西北生态环境资源研究院中国科学院黑河遥感试验研究站;中国科学院大学;兰州大学;
【基金】:国家自然科学基金项目(41471357);国家自然科学基金重点项目(41531174) 甘肃省自然科学基金项目(1501RJZA013)
【分类号】:S152.7
【相似文献】
相关期刊论文 前10条
1 彭万杰;郭异礁;;虎峰镇土壤水分的动态及其随机模拟[J];安徽农业科学;2009年06期
2 杨涛;宫辉力;李小娟;赵文吉;孟丹;;土壤水分遥感监测研究进展[J];生态学报;2010年22期
3 徐联;申俊初;翟英涛;;影响土壤水分观测精确度的原因及观测注意事项探讨[J];贵州气象;2011年04期
4 高建华;胡振华;;土壤水分基础理论及其应用研究进展[J];亚热带水土保持;2011年03期
5 王安琪;施建成;宫辉力;解超;;降尺度土壤水分信息与植被生长参量的时空关系[J];农业工程学报;2012年S1期
6 胡伟;熊凌云;熊雄;胡新华;;自动土壤水分数据质量控制中的阈值确定[J];气象水文海洋仪器;2012年03期
7 陆枫;胡志洪;胡毅恒;;土壤水分测定方法研究[J];企业导报;2012年23期
8 黄文杰;吕军;翟伶俐;魏晓奕;朱宝;;人工与自动土壤水分观测资料差异探讨[J];中国农学通报;2013年14期
9 冯兆林;陈玲爱;;华北地区土壤水分问题——Ⅰ.土壤水的扩散机制及水在剖面中运动的限制[J];土壤学报;1958年01期
10 马同生;对土壤水分势能概念中几个词统一译意的商榷[J];土壤;1980年03期
相关会议论文 前10条
1 王新;;农气报表土壤水分记录审核软件[A];山东气象学会2005年学术交流会优秀论文集[C];2005年
2 薛龙琴;冶林茂;陈海波;;河南省自动土壤水分观测网的建设和应用[A];第26届中国气象学会年会第三届气象综合探测技术研讨会分会场论文集[C];2009年
3 薛龙琴;冶林茂;陈海波;师丽魁;;河南省自动土壤水分资料与人工观测资料对比分析[A];第27届中国气象学会年会现代农业气象防灾减灾与粮食安全分会场论文集[C];2010年
4 除多;次仁多吉;边巴次仁;王彩云;;西藏中部土壤水分遥感监测方法研究[A];第27届中国气象学会年会干旱半干旱区地气相互作用分会场论文集[C];2010年
5 姚付启;蔡焕杰;张振华;;烟台苹果园表层土壤水分与深层土壤水分转换关系研究[A];现代节水高效农业与生态灌区建设(下)[C];2010年
6 石庆兰;王一鸣;冯磊;;土壤水分测量中相位差检测算法的实验与研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
7 巫丽君;潘建梅;魏爱明;王秀琴;;自动土壤水分观测数据异常原因浅析[A];“推进气象科技创新,,提高防灾减灾和应对气候变化能力”——江苏省气象学会第七届学术交流会论文集[C];2011年
8 杨海鹰;冶林茂;陈海波;;土壤水分研究进展[A];第28届中国气象学会年会——S11气象与现代农业[C];2011年
9 黄奕龙;傅伯杰;陈利顶;;黄土丘陵坡地土壤水分时空变化特征[A];地理教育与学科发展——中国地理学会2002年学术年会论文摘要集[C];2002年
10 陈怀亮;徐祥德;刘玉洁;厉王f;邹春辉;翁永辉;;基于遥感和区域气候模式的土壤水分预报方法研究[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(上册)[C];2004年
相关重要报纸文章 前10条
1 班胜林;山西引进新型土壤水分观测仪[N];中国气象报;2010年
2 记者 王量迪 通讯员 陈瑜;我市建成两个自动土壤水分观测站[N];宁波日报;2010年
3 王一;土壤水分快速测量技术获突破[N];科技日报;2003年
4 记者 宛霞 通讯员 赵志强;中国气象局将加强土壤水分观测[N];中国气象报;2009年
5 记者 王建忠;我国将布设1500套自动土壤水分观测仪[N];中国气象报;2009年
6 实习记者 王宝军 通讯员 赵志强;全国建成76个自动土壤水分观测站[N];中国气象报;2009年
7 张芳 仲维健;江苏启动土壤水分自动观测网建设[N];中国气象报;2009年
8 记者 刘剑英;我省首个自动土壤水分观测站大名投用[N];河北日报;2009年
9 邢开成 胡佳军;河北邯郸首个自动土壤水分观测站投入使用[N];粮油市场报;2009年
10 记者 田宜龙;66个自动土壤水分观测站建成[N];河南日报;2010年
相关博士学位论文 前10条
1 王安琪;大尺度被动微波辐射计土壤水分降尺度方法研究[D];首都师范大学;2013年
2 刘丙霞;黄土区典型灌草植被土壤水分时空分布及其植被承载力研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2015年
3 刘艳;喀斯特峰丛洼地不同土地利用方式下表层土壤水分的时空规律研究[D];广西大学;2016年
4 褚楠;基于状态—参数同步估计的土壤水分数据同化研究[D];中国矿业大学;2016年
5 李陆生;山地旱作枣园细根分布格局及其土壤水分生态效应[D];西北农林科技大学;2016年
6 王改改;丘陵山地土壤水分时空变化及其模拟[D];西南大学;2009年
7 刘伟;植被覆盖地表极化雷达土壤水分反演与应用研究[D];中国科学院研究生院(遥感应用研究所);2005年
8 杨开宝;黄土丘陵区不同农业技术措施的土壤水分效应研究[D];西北农林科技大学;2010年
9 赵燕东;土壤水分快速测量方法及其应用技术研究[D];中国农业大学;2002年
10 吴元芝;黄土区土壤水分对典型植物有效性的研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2010年
相关硕士学位论文 前10条
1 赵忠凯;土壤水分监控保障系统研究[D];北京邮电大学;2012年
2 苏欢;河南省土壤水分的时空变化特征及其与气象要素的关系[D];南京信息工程大学;2015年
3 张洛丹;不同植被类型对陡坡地土壤水分循环的影响[D];西北农林科技大学;2015年
4 白盛元;黄土土柱降雨特征与土壤水分入渗过程研究[D];西北农林科技大学;2015年
5 上官玉铎;负水头条件下土壤水分入渗和氮素分布规律研究[D];中国农业科学院;2015年
6 陈鲁燕;基于MODIS数据的榆林土壤水分研究[D];长安大学;2015年
7 常继钟;不同耕种方式对作物苗期土壤水分影响的研究[D];山西农业大学;2015年
8 张磊;双面蒸发条件下沟岸地土壤水分时空分布特征[D];西北农林科技大学;2015年
9 赵东发;基于IEM模型的双极化TerraSAR数据反演土壤水分[D];中国矿业大学;2015年
10 武江涛;黄土丘陵沟壑区小流域土壤水分空间变异研究[D];山西大学;2015年
本文编号:2369575
本文链接:https://www.wllwen.com/kejilunwen/nykj/2369575.html