陇东黄土高原人工刺槐林枯落物层和土壤层生态水文功能研究
[Abstract]:In the small watershed of Guanshan Forest Farm, the Guanshan Forest Farm, Gansu Province, the artificial Robinia pseudoacacia forest with the forest age of over 25 years was used as the research object. The method of forest sub-structure investigation, indoor soaking method, soil profile survey and soil water-physical property determination were used. The ecological and hydrological characteristics of the litter layer and the soil layer under different forest sub-densities were studied according to the different forest sub-densities to 6 densities (750 plants/ hm2, 1227 plants/ hm2, 1600 plants/ hm2, 2196 plants/ hm2, 3780 plants/ hm2 and 4563 plants/ hm2). The physical characteristics of the soil, the water holding capacity and the permeability characteristics, in-depth understanding of the relationship between the vegetation of the plantation and the ecological and hydrological functions of the soil and the litter, provide the theoretical reference for the rational management of the artificial forest in the region, and provide the theoretical reference for the scientific construction of the forest vegetation. The main research conclusions are as follows: (1) The variation range of total accumulation of 6 kinds of density artificial Robinia pseudoacacia forest was in the range of 8.09-13.40t/ hm ~ 2, with the increase of the forest sub-density, the lower litter of the forest was first increased and then decreased, and the accumulated volume of the undecomposed layer in the forest accounted for a gradual increase in the percentage of total accumulated volume. The range of variation is 40.00% ~ 62.83%, while the proportion of semi-decomposed layer is gradually reduced, and the range of variation is 37. 17% ~ 59. 00%. The water-holding process of the undecomposed layer and the semi-decomposition layer of different forest sub-density litter is similar to that of the semi-decomposition layer, and the relationship between the water-holding rate and the power function of the soaking time is significant. The variation range of total effective retention of all dry and dry land is: 8.03 ~ 3.4t/ hm ~ 2, and the overall performance is that with the increase of the forest sub-density, the effective impoundment shows the tendency to decrease, and the undecomposed layer is more effective than the semi-decomposition layer. (2) With the change of the density of the forest, the average bulk density of the different forest sub-densities was 750/ hm21227/ hm21600/ hm24563/ hm23780/ hm ~ 2; the mean and non-gross porosity of the soil were 3.96-12.00%, 44. 60-53. 07%, respectively. The bulk density, total porosity and porosity of non-gross tube of different forest in 0-40cm were significant (P0.05), and the total soil bulk density, total porosity and non-gross tube porosity were not significant (P0.05). The maximum water holding capacity in all areas was between 20-40cm and 40-60cm (P0.05). It showed that it was 3780/ hm24563/ hm22196/ hm21227/ hm2750/ hm21600/ hm ~ 2 and 4563/ hm22196/ hm21227/ hm23780/ hm2750/ hm21600/ hm2. (3) The average penetration rate of Robinia pseudoacacia plantation with different density was 4563/ hm ~ 2 of Robinia pseudoacacia plantation, and the density was 750/ hm ~ 2 of Robinia pseudoacacia plantation. The soil initial infiltration rate of each artificial Robinia pseudoacacia stands from high to low in order of 4563/ hm23780/ hm22196/ hm21227/ hm2750/ hm21600/ hm2, with the highest soil stabilization rate of 4563/ hm2 of Robinia pseudoacacia (3.40 mm/ min) and the lowest density of 750/ hm2 of Robinia pseudoacacia (0.82 mm/ min). (4) The soil moisture of each artificial Robinia pseudoacacia is more stable in the early stage of growth season (that is, the leaf period), and with the increase of the forest sub-density, the trend of decreasing is first increased; after the growth season, the water content of the soil gradually shows a loss, In addition, at the later stage of the growth season, the density was 1600 plants/ hm2, and the other several showed a certain degree of loss, and the density was 4563 plants/ hm2, and even moderate soil drying was observed. (5) The maximum water holding capacity and the effective water holding capacity of the dry and soil layer and the soil layer are comprehensively analyzed, and the soil layer accounts for more than 96% of the total amount of the forest land, so the soil layer is the main place for regulating the precipitation and the retention of water in the forest land. The results of the comprehensive evaluation on the ecological and hydrological function of the litter layer and the soil layer in different forest sub-density of Robinia pseudoacacia were 4563/ hm23780/ hm22196/ hm21600/ hm21227/ hm2750/ hm2, and the results were consistent with the results of the evaluation of the soil layer. It is indicated that the soil layer is the main place to play in the function of the hydrological regulation of the forest land.
【学位授予单位】:甘肃农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S714
【相似文献】
相关期刊论文 前10条
1 彭镇华;刺槐[J];中国城市林业;2004年01期
2 徐秀琴;杨敏生;;刺槐资源的利用现状[J];河北林业科技;2006年S1期
3 白明虎;;刺槐常见的病虫害及防治措施[J];吉林农业;2011年05期
4 毛慧;;浅议国内刺槐研究[J];河南林业科技;2011年03期
5 杜振宇;张树岩;;刺槐抗逆性研究进展[J];山东林业科技;2012年03期
6 张树彬;胡振宇;聂新宇;杨海军;;刺槐在锦州市造林中的应用及建议[J];防护林科技;2013年08期
7 Н.А.лохмотов;张廷桢;;乌克兰草原刺槐林的枯死和复壮意见[J];陕西林业科技;1976年06期
8 一杰;;谈谈生产单一刺槐蜜的问题[J];中国养蜂;1976年01期
9 赵世恒;龙新成;张庆连;;六省市刺槐考察报告[J];河南林业科技;1982年01期
10 夏祥云;;关于我省刺槐林经营管理的几点建议[J];河南林业;1985年03期
相关会议论文 前7条
1 张江涛;允超;朱延林;;浅议国内刺槐研究[A];第二届中国林业学术大会——S2 功能基因组时代的林木遗传与改良论文集[C];2009年
2 张敦论;张振芬;王方泉;;刺槐无性系育种研究[A];中国林木遗传育种进展[C];1991年
3 赵忠;曹扬;成向荣;王迪海;;刺槐根系对深层土壤水分的影响[A];2005年全国学术年会农业分会场论文专集[C];2005年
4 宋永芳;;发展速生刺槐林 培育林业新产业[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(下)[C];2003年
5 沈芳;贺康宁;张光灿;;黄土半干旱区集水造林地刺槐的林木生产力和水分生产潜力[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年
6 卫三平;王力;;黄土丘陵区农林地SVAT系统水分传输模拟研究[A];山西省第十一届青年优秀水利科技论文选集[C];2012年
7 卫三平;王力;;黄土丘陵沟壑区刺槐林冠的水文特征[A];山西省第十一届青年优秀水利科技论文选集[C];2012年
相关重要报纸文章 前5条
1 田现增;河口区实施10万亩刺槐林恢复工程[N];东营日报;2012年
2 唐山市汉沽管理区农业局 郭香宝;人工改造灌状丛生刺槐成林技术[N];河北科技报;2006年
3 ;多倍体刺槐综合利用项目大有可为[N];中国现代企业报;2008年
4 记者 赵侠;陕西将适度增加刺槐成过熟林采伐指标[N];中国绿色时报;2011年
5 本报记者 杜鹏;百年老矿的生态复兴[N];黄石日报;2013年
相关博士学位论文 前10条
1 李泰君;陕西黄土高原人工刺槐林碳固持特征与影响因子[D];西北农林科技大学;2015年
2 陈莉莉;黄土丘陵区油松和刺槐人工林地下生产力及生态化学计量特征研究[D];中国科学院教育部水土保持与生态环境研究中心;2017年
3 史振华;晋西黄土区刺槐生长与降水量的关系[D];北京林业大学;2009年
4 郑元;刺槐光合生理特征与固碳能力研究[D];西北农林科技大学;2010年
5 曹帮华;刺槐抗旱抗盐特性研究[D];北京林业大学;2005年
6 袁存权;刺槐有性生殖过程及交配系统研究[D];北京林业大学;2013年
7 刘江华;黄土高原刺槐人工林生长特征及其天然化程度评价[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2008年
8 周靖靖;刺槐林叶面积指数特征及其遥感影像反演[D];西北农林科技大学;2014年
9 杨芳绒;河南洛宁浅山区刺槐能源林生物量与热值研究[D];北京林业大学;2013年
10 张国君;饲料型刺槐优良无性系选育及其栽培利用研究[D];北京林业大学;2010年
相关硕士学位论文 前10条
1 杨俊嫒;刺槐在呼和浩特市区的生长发育规律及适应性研究[D];内蒙古农业大学;2011年
2 张雅丽;安太堡露天矿排土场不同植物配置模式的刺槐种群动态分析[D];山西大学;2014年
3 李芳菲;刺槐人工林C、N、P分配格局及其化学计量特征研究[D];西北农林科技大学;2015年
4 孙培峰;不同林龄刺槐人工林林分结构和土壤特性研究[D];西北农林科技大学;2015年
5 韩跃;黄河三角洲混交林生长规律和土壤特性研究[D];山东农业大学;2015年
6 张顺祥;渭北黄土高原刺槐人工林健康评价经营计算机辅助系统的构建[D];西北农林科技大学;2015年
7 史元春;兰州北山刺槐主要功能性状的坡向差异研究[D];西北师范大学;2015年
8 王红霞;黄土高原刺槐植物功能性状变化与环境适应的生态学意义[D];西北农林科技大学;2016年
9 徐海燕;安塞县刺槐林分结构与叶性状特征[D];西北农林科技大学;2016年
10 姜丽娜;多花刺槐有性生殖生物学研究[D];山东农业大学;2016年
,本文编号:2379405
本文链接:https://www.wllwen.com/kejilunwen/nykj/2379405.html