当前位置:主页 > 科技论文 > 农业技术论文 >

基于植被指数的藏北牧区土壤湿度反演

发布时间:2018-12-25 19:56
【摘要】:土壤湿度的遥感动态监测在农牧业生产中具有重要意义。近年来,多种基于遥感指数的土壤湿度监测方法被提出并得到广泛关注,但当前对不同深度土壤湿度的反演及植被指数反映土壤湿度滞后性的研究较少。该文针对遥感指数反演土壤湿度的精度问题,对MODIS(moderate resolutionimaging spectroradiometer)的2种植被指数产品归一化差异植被指数(normalized difference vegetation index,NDVI)和增强型植被指数(enhanced vegetation index,EVI)与土壤湿度实测值进行相关分析,并利用在其中一个样点得到相关系数最高的回归模型对距离较远的其它点进行土壤湿度值估算,最后用土壤湿度实测值对模型的精度进行验证。结果表明,2种植被指数均与土壤湿度值呈现出较强的相关性,且利用植被指数估算土壤湿度的延迟天数为5~10 d。在相同气候模式、土壤类型和植被类型的条件下,高程为影响回归模型精度的主要因素。该研究可为牧区多层深度土壤湿度反演方法的选择和监测提供参考依据。
[Abstract]:Remote sensing dynamic monitoring of soil moisture is of great significance in agricultural and animal husbandry production. In recent years, many soil moisture monitoring methods based on remote sensing index have been put forward and paid more attention to. However, there are few researches on soil moisture inversion and vegetation index reflecting soil moisture lag in different depth. Aiming at the precision of soil moisture retrieval by remote sensing index, the normalized difference vegetation index (normalized difference vegetation index,NDVI) and the enhanced vegetation index (enhanced vegetation index,) of MODIS (moderate resolutionimaging spectroradiometer) 2 planting were studied in this paper. EVI) is used to analyze the correlation between soil moisture and the measured values of soil moisture, and the regression model with the highest correlation coefficient is used to estimate the soil moisture values at other points far away. Finally, the accuracy of the model is verified by soil moisture measurement. The results showed that there was a strong correlation between planting cover index and soil moisture value, and the delay days of estimating soil moisture by vegetation index was 5 ~ 10 days. Under the same climate model, soil type and vegetation type, height is the main factor affecting the precision of regression model. This study can be used as a reference for the selection and monitoring of soil moisture inversion methods for multi-layer depth in pastoral areas.
【作者单位】: 吉林农业大学资源与环境学院;吉林省商品粮基地土壤资源可持续利用重点实验室;
【基金】:公益性行业(农业)科研专项经费项目(201503116-06) 国家科技支撑计划项目(2013BAC09B01) 吉林省科技厅重大科技攻关专项(20130204050SF) 国家科技重大专项(2014ZX07201-011-006) 吉林农业大学科研启动基金项目(201240)
【分类号】:S152.71;S127

【相似文献】

相关期刊论文 前10条

1 王福民;黄敬峰;王秀珍;;基于水稻背景特性的植被指数参数修正研究[J];农业工程学报;2008年05期

2 何彬方;冯妍;吴文玉;范伟;;安徽省近十年植被指数时空变化特征[J];生态学杂志;2010年10期

3 解文欢;张有智;吴黎;;基于植被指数对望奎县粮食作物产量预测方法的研究[J];黑龙江农业科学;2011年04期

4 康耀江;;植被指数在草地遥感中的应用初探[J];湖南农业科学;2011年Z1期

5 张仁华,饶农新,廖国男;植被指数的抗大气影响探讨[J];植物学报;1996年01期

6 国红;彭世揆;赵博光;;内蒙古鄂托克前旗地区苦豆子植被指数信息提取的研究[J];林业资源管理;2008年04期

7 范文义;白新源;冯欣;李明泽;杜华强;;哈尔滨热岛效应与植被指数关系的动态分析[J];东北林业大学学报;2009年06期

8 杜春雨;范文义;;叶面积指数与植被指数关系研究[J];林业勘查设计;2013年02期

9 杨洁;隋学艳;杨丽萍;郭洪海;朱振林;;山东省植被指数影像数据库的设计与实现[J];安徽农业科学;2011年29期

10 胡晓雯;曹爽;赵显富;;基于植被指数的绿地信息提取的比较[J];南京信息工程大学学报(自然科学版);2012年05期

相关会议论文 前10条

1 付卓;王锦地;施建成;宋金玲;靳华安;张立新;张钟军;赵少杰;陈柏松;;微波植被指数与光学植被指数在地面尺度上的关系研究[A];遥感定量反演算法研讨会摘要集[C];2010年

2 辛红梅;张杰;马毅;初佳兰;;基于植被指数的赤潮高光谱敏感波段确定方法初探[A];第十四届全国遥感技术学术交流会论文选集[C];2003年

3 范锦龙;;我国晴空分布及对旬合成植被指数的影响[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册)[C];2004年

4 张树誉;李登科;李星敏;周辉;;遥感植被指数及其在县域生态环境监测评估中的应用[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

5 安培浚;颉耀文;;绿洲植被指数的遥感定量研究-以民勤绿洲为例[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

6 江东;王乃斌;杨小唤;刘红辉;;植被指数—地面温度特征空间及其应用[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年

7 傅军;张杰;辛红梅;马毅;;基于植被指数的高光谱遥感水陆识别方法初探[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年

8 肖乾广;肖岚;李亚君;;EOS/MODIS,FY-1D/MVISR,NOAA/AVHRR的归一化植被指数的同化研究[A];全国国土资源与环境遥感应用技术研讨会论文集[C];2009年

9 杨道勇;肖云岫;;利用WT-10接收的1B高分辨云图数据生成植被指数图像[A];中国气象学会2005年年会论文集[C];2005年

10 何全军;曹静;张月维;;基于MODIS的广东省植被指数序列构建与应用[A];中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集[C];2007年

相关重要报纸文章 前1条

1 魏景云;气象卫星监测干旱 全国旱情一目了然[N];中国气象报;2003年

相关博士学位论文 前4条

1 卫炜;MODIS双星数据协同的耕地物候参数提取方法研究[D];中国农业科学院;2015年

2 张立福;通用光谱模式分解算法及植被指数的建立[D];武汉大学;2005年

3 岳文泽;基于遥感影像的城市景观格局及其热环境效应研究[D];华东师范大学;2005年

4 刘占宇;水稻主要病虫害胁迫遥感监测研究[D];浙江大学;2008年

相关硕士学位论文 前10条

1 刘吉凯;基于HJ卫星数据的甘蔗长势监测与估产研究[D];南京信息工程大学;2015年

2 郑亚云;榆林NDVI时空变化及驱动因子研究[D];长安大学;2015年

3 何春萌;经济利益驱动下的工矿开发对人类生存环境的影响[D];内蒙古大学;2015年

4 刘晓静;基于不同遥感数据源的秦岭地区植被指数对比分析[D];长安大学;2015年

5 王鑫梅;氮素水平对不同土壤质地杨树叶片光谱特性和光合能力的影响[D];河北农业大学;2015年

6 官雨薇;基于遥感影像的全球荒漠化指数构建及趋势分析[D];电子科技大学;2015年

7 胡文;黑龙江省雹灾遥感监测及时空特征分析[D];东北农业大学;2015年

8 吴明业;基于TVDI的土壤干旱遥感监测研究及验证[D];安徽农业大学;2014年

9 韩春光;新疆植被指数与气象因子的响应关系研究[D];新疆大学;2009年

10 辛红梅;基于植被指数的航空高光谱赤潮检测方法[D];中国海洋大学;2005年



本文编号:2391568

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2391568.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7021f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com