当前位置:主页 > 科技论文 > 农业技术论文 >

陕北黄土丘陵区枣林休眠期土壤水分与温度特征研究

发布时间:2019-07-08 11:59
【摘要】:陕北黄土丘陵区属于典型的半干旱气候区,降雨量较少且蒸发强烈,土壤水分长期处于亏缺状态。本文以黄土丘陵区枣林地和裸地为研究对象,在研究其全年土壤水分及温度变化特征的前提下,探讨其在枣林休眠期的土壤水分及温度变化特征,并通过连续定位监测裸地与覆膜条件下的浅层土壤水分及土壤温度,探讨土壤浅层的水分迁移规律及其缘由,评价覆膜措施在枣林休眠期的土壤保墒效果,对修复和治理黄土高原规模化林草地土壤干化具有借鉴作用。同时利用hydrus-1D模型对裸地及覆膜条件下的浅层土壤水分及温度进行模拟,为不同年份休眠期的覆膜保墒措施提供理论基础。主要得出以下结论:(1)枣林地1000cm土层内土壤水分在全年的变化可分为三层:易变层(0-250cm)、难变层(250-750cm)和稳定层(750-1000cm),其中易变层土壤水分变化范围为6.39%-12.83%,土壤储水量变化于148-235mm,难变层土壤储水量变化于391-460mm,稳定层土壤储水量变化于240-268mm。随着土层深度的增加,深层土壤储水量不断增加且水分的季节性变幅迅速减小,另外深层土壤水分的变化较浅层土壤具有一定的滞后性。(2)枣林休眠期土壤水分损失主要发生在浅层土壤,其中裸地和枣林地50cm土层土壤水分损失量占全部损失量的47.5%和52.8%,而50-340cm土壤水分损失量占全部损失量的34.5%和35.2%,340-1000cm土壤水分损失量占全部损失量的18%、12%。水分消耗主要来自土壤的自然蒸发,10月份土壤水分为休眠期最高值,10月初到土壤发生冻结前,土壤水分下降速度较快,土壤发生冻结后,地表冻结蒸发减小,深层土壤温度较浅层土壤温度高,土壤未冻水随着土壤中热量的传输而发生转移,深层土壤水分向地表迁移,浅层土壤水分呈上升趋势,持续至土壤解冻,土壤水分开始下降。历经整个休眠期,0-60cm土层土壤水分均值由11.4%降至8.93%,60~200cm土层土壤水分在休眠期基本处于稳定,均值为7.03%。(3)土壤中的温度梯度是导致土壤水分运移变化的一个重要因素,而土壤的热量主要来自于太阳辐射,太阳辐射对土壤温度的影响达到土层以下50cm深度。在晴天,裸地土壤温度表现出正弦趋势的昼夜变化特征,随着土层深度的增加,土壤温度最值出现的时间较上层土壤滞后,同时,土壤温度的日振幅值也在减小。在两种覆膜条件下,土壤温度日最大值和日最小值出现的时间均较裸地滞后,其中黑色覆膜又滞后于白色覆膜。土壤温度日最大值白色覆膜裸地黑色覆膜,而日最小值黑色覆膜白色覆膜裸地。另外,裸地及覆膜条件下各个土层地温与气温呈显著的线性关系,且随着土层深度的增加,相关性逐渐减弱。(4)枣林生长期降雨较少时,随着土壤温度的不断升高,土壤水分呈下降趋势,覆膜措施可有效抑制土壤水分的蒸发损失,土壤水分蒸发损失平均速度裸地白色覆膜黑色覆膜。枣林休眠期土壤未冻结阶段,土壤水分较低,降雨量较少,土壤水分蒸发对土壤温度的敏感性减弱,土壤温度与土壤水分均呈下降趋势,其中水分下降速度裸地白色覆膜黑色覆膜,裸地0-50cm土层土壤储水量减少7.34mm,白色覆膜和黑色覆膜0-50cm土层土壤储水量分别减少4.85mm和4.02mm。(5)hydrus-1D模型对裸地及黑色薄膜覆盖下的土壤水分及温度的模拟结果与实测值吻合良好,为土壤水分运移模式的分析和不同年份枣林休眠期的覆膜保墒措施提供了理论基础。
[Abstract]:The loess hilly region of northern Shaanxi is a typical semi-arid climate region, with less rainfall and strong evaporation, and the soil moisture is in a deficit condition for a long time. Based on the study of the characteristics of soil moisture and temperature in the whole year, the soil moisture and the temperature change of the jujube forest in the period of the jujube forest were studied in this paper, based on the study of the characteristics of soil moisture and temperature in the hilly region of the Loess Plateau. The soil moisture and soil temperature under the condition of the bare land and the coating film were monitored by continuous positioning, and the water migration law and the cause of the soil shallow layer were discussed, and the effect of the film-coating on the soil moisture retention in the period of the jujube forest was evaluated. The soil drying of the large-scale forest grassland in the loess plateau is of reference to the restoration and treatment of the loess plateau. At the same time, using the hydro-1D model to simulate the shallow soil moisture and temperature under the bare and covered conditions, the paper provides a theoretical basis for the film-covered protection measures in different years. The results are as follows: (1) The change of soil moisture in the 1000cm soil layer of the jujube forest in the whole year can be divided into three layers: the variable layer (0-250cm), the difficult-to-change layer (250-750 cm) and the stable layer (750-1000cm), wherein the variation range of the water content of the variable layer is 6.39-12.83%, and the water storage capacity of the soil is changed to 148-235 mm, The water storage capacity of the hard-changing soil layer varied from 391 to 460 mm, and the water storage capacity of the stable layer varied from 240 to 268 mm. With the increase of the depth of the soil layer, the water storage capacity of the deep soil is increasing, and the seasonal variation of the moisture is rapidly reduced, and the change of the deep soil moisture has a certain lag in the shallow soil. (2) The soil moisture loss in the period of the jujube forest is mainly in the shallow soil, in which the loss of soil moisture in the 50 cm soil layer of the bare land and the date forest accounts for 47.5% and 52.8% of the total loss, while the loss of soil moisture in the 50-340cm accounts for 34.5% and 35.2% of the total loss. The loss of soil moisture in 340-1000cm accounts for 18% and 12% of total loss. The water consumption mainly comes from the natural evaporation of the soil, and the soil moisture in October is the highest value of the soil, and before the freezing of the soil in the beginning of October, the soil moisture decreases rapidly, and after the soil is frozen, the surface freezing evaporation is reduced, and the deep soil temperature is higher than the shallow soil temperature, With the transfer of the heat in the soil, the soil moisture was transferred to the surface, and the soil moisture in the shallow layer was on the rise, and then the soil was unfrozen and the soil moisture began to decline. The mean value of soil moisture in the 0-60 cm soil layer decreased from 11.4% to 8.93% over the whole period, and the soil moisture in the 60 ~ 200 cm soil layer was basically stable in the period of time and the mean value was 7.03%. (3) The temperature gradient in the soil is an important factor leading to the change of soil moisture, and the heat of the soil mainly comes from the solar radiation, and the effect of the solar radiation on the soil temperature reaches the depth of 50 cm below the soil layer. In a sunny day, the temperature of the bare soil shows the diurnal variation of the sinusoidal trend. With the increase of the depth of the soil layer, the time of the soil temperature is lower than that of the upper soil, and the daily amplitude value of the soil temperature is also decreasing. Under the two film-coating conditions, the time of the maximum and daily minimum value of soil temperature was lower than that of the white film. The maximum value of the soil temperature is the black film of the white film, while the daily minimum of the black-coated white film is bare. In addition, there is a significant linear relationship between the ground temperature and the temperature of each soil layer under the condition of bare land and film, and the correlation is gradually weakened with the increase of the depth of the soil layer. (4) When the rainfall in the growing period of the jujube forest is small, with the rising of the soil temperature, the soil moisture shows a downward trend, and the film-coating measures can effectively inhibit the evaporation loss of the soil water, and the average speed of the water evaporation loss of the soil water is the bare white-coated black film. the soil moisture content is lower, the rainfall is less, the sensitivity of the soil moisture evaporation to the soil temperature is reduced, the soil temperature and the soil moisture are all down, The soil storage capacity of the bare ground 0-50 cm soil layer is reduced by 7.34 mm, and the soil storage capacity of the white film and the black-coated 0-50 cm soil layer is reduced by 4.85 mm and 4.02 mm, respectively. (5) The simulation results of the hydro-1D model on the soil moisture and temperature under the coverage of the bare and black films are in good agreement with the measured values, and provide a theoretical basis for the analysis of the soil water migration pattern and the film-covering and protection measures for the date of the date and the time of the date in different years.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S152

【相似文献】

相关期刊论文 前10条

1 彭万杰;郭异礁;;虎峰镇土壤水分的动态及其随机模拟[J];安徽农业科学;2009年06期

2 杨涛;宫辉力;李小娟;赵文吉;孟丹;;土壤水分遥感监测研究进展[J];生态学报;2010年22期

3 徐联;申俊初;翟英涛;;影响土壤水分观测精确度的原因及观测注意事项探讨[J];贵州气象;2011年04期

4 高建华;胡振华;;土壤水分基础理论及其应用研究进展[J];亚热带水土保持;2011年03期

5 王安琪;施建成;宫辉力;解超;;降尺度土壤水分信息与植被生长参量的时空关系[J];农业工程学报;2012年S1期

6 胡伟;熊凌云;熊雄;胡新华;;自动土壤水分数据质量控制中的阈值确定[J];气象水文海洋仪器;2012年03期

7 陆枫;胡志洪;胡毅恒;;土壤水分测定方法研究[J];企业导报;2012年23期

8 黄文杰;吕军;翟伶俐;魏晓奕;朱宝;;人工与自动土壤水分观测资料差异探讨[J];中国农学通报;2013年14期

9 冯兆林;陈玲爱;;华北地区土壤水分问题——Ⅰ.土壤水的扩散机制及水在剖面中运动的限制[J];土壤学报;1958年01期

10 花临亭;;辽西砂荒地带土壤水分演变趋势与土地利用问题[J];辽宁农业科学;1963年03期

相关会议论文 前10条

1 王新;;农气报表土壤水分记录审核软件[A];山东气象学会2005年学术交流会优秀论文集[C];2005年

2 薛龙琴;冶林茂;陈海波;;河南省自动土壤水分观测网的建设和应用[A];第26届中国气象学会年会第三届气象综合探测技术研讨会分会场论文集[C];2009年

3 薛龙琴;冶林茂;陈海波;师丽魁;;河南省自动土壤水分资料与人工观测资料对比分析[A];第27届中国气象学会年会现代农业气象防灾减灾与粮食安全分会场论文集[C];2010年

4 除多;次仁多吉;边巴次仁;王彩云;;西藏中部土壤水分遥感监测方法研究[A];第27届中国气象学会年会干旱半干旱区地气相互作用分会场论文集[C];2010年

5 姚付启;蔡焕杰;张振华;;烟台苹果园表层土壤水分与深层土壤水分转换关系研究[A];现代节水高效农业与生态灌区建设(下)[C];2010年

6 石庆兰;王一鸣;冯磊;;土壤水分测量中相位差检测算法的实验与研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年

7 巫丽君;潘建梅;魏爱明;王秀琴;;自动土壤水分观测数据异常原因浅析[A];“推进气象科技创新,,提高防灾减灾和应对气候变化能力”——江苏省气象学会第七届学术交流会论文集[C];2011年

8 杨海鹰;冶林茂;陈海波;;土壤水分研究进展[A];第28届中国气象学会年会——S11气象与现代农业[C];2011年

9 黄奕龙;傅伯杰;陈利顶;;黄土丘陵坡地土壤水分时空变化特征[A];地理教育与学科发展——中国地理学会2002年学术年会论文摘要集[C];2002年

10 陈怀亮;徐祥德;刘玉洁;厉王f;邹春辉;翁永辉;;基于遥感和区域气候模式的土壤水分预报方法研究[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(上册)[C];2004年

相关重要报纸文章 前10条

1 班胜林;山西引进新型土壤水分观测仪[N];中国气象报;2010年

2 记者 王量迪 通讯员 陈瑜;我市建成两个自动土壤水分观测站[N];宁波日报;2010年

3 王一;土壤水分快速测量技术获突破[N];科技日报;2003年

4 记者 宛霞 通讯员 赵志强;中国气象局将加强土壤水分观测[N];中国气象报;2009年

5 记者 王建忠;我国将布设1500套自动土壤水分观测仪[N];中国气象报;2009年

6 记者 田宜龙;我省建成55个土壤水分自动观测站[N];河南日报;2009年

7 实习记者 王宝军 通讯员 赵志强;全国建成76个自动土壤水分观测站[N];中国气象报;2009年

8 张芳 仲维健;江苏启动土壤水分自动观测网建设[N];中国气象报;2009年

9 记者 刘剑英;我省首个自动土壤水分观测站大名投用[N];河北日报;2009年

10 邢开成 胡佳军;河北邯郸首个自动土壤水分观测站投入使用[N];粮油市场报;2009年

相关博士学位论文 前10条

1 王安琪;大尺度被动微波辐射计土壤水分降尺度方法研究[D];首都师范大学;2013年

2 魏新光;黄土丘陵半干旱区山地枣树蒸腾规律及其节水调控策略[D];西北农林科技大学;2015年

3 刘丙霞;黄土区典型灌草植被土壤水分时空分布及其植被承载力研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2015年

4 杨长刚;半干旱雨养区覆盖种植冬麦田土壤水热效应[D];甘肃农业大学;2015年

5 刘艳;喀斯特峰丛洼地不同土地利用方式下表层土壤水分的时空规律研究[D];广西大学;2016年

6 褚楠;基于状态—参数同步估计的土壤水分数据同化研究[D];中国矿业大学;2016年

7 王改改;丘陵山地土壤水分时空变化及其模拟[D];西南大学;2009年

8 刘伟;植被覆盖地表极化雷达土壤水分反演与应用研究[D];中国科学院研究生院(遥感应用研究所);2005年

9 杨开宝;黄土丘陵区不同农业技术措施的土壤水分效应研究[D];西北农林科技大学;2010年

10 赵燕东;土壤水分快速测量方法及其应用技术研究[D];中国农业大学;2002年

相关硕士学位论文 前10条

1 赵忠凯;土壤水分监控保障系统研究[D];北京邮电大学;2012年

2 苏欢;河南省土壤水分的时空变化特征及其与气象要素的关系[D];南京信息工程大学;2015年

3 丁从慧;土壤水分对夏玉米生理生态特征的影响及动态模拟研究[D];南京信息工程大学;2015年

4 张洛丹;不同植被类型对陡坡地土壤水分循环的影响[D];西北农林科技大学;2015年

5 白盛元;黄土土柱降雨特征与土壤水分入渗过程研究[D];西北农林科技大学;2015年

6 李佳洲;土壤水分对三七生长及有效成分的影响[D];西北农林科技大学;2015年

7 张雪;牧草根系形态特征及土壤水分对修剪高度的响应研究[D];西北农林科技大学;2015年

8 王金锋;不同覆盖方式对渭北苹果园土壤水分、温度及产量品质的影响[D];西北农林科技大学;2015年

9 苏一鸣;黄土高原旱地苹果园起垄覆膜垄沟覆草技术研究[D];西北农林科技大学;2015年

10 上官玉铎;负水头条件下土壤水分入渗和氮素分布规律研究[D];中国农业科学院;2015年



本文编号:2511567

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2511567.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4825f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com