当前位置:主页 > 科技论文 > 汽车论文 >

外形参数对纯电动轿车气动阻力的影响研究

发布时间:2018-06-01 13:25

  本文选题:纯电动轿车 + 气动阻力 ; 参考:《吉林大学》2016年硕士论文


【摘要】:面临环境及能源的双重压力,绿色能源日益成为未来发展的总趋势,零排放、无污染的纯电动汽车受到越来越多的青睐。但目前由于配套设施不完善、续驶里程难以满足人们日常所需等问题,发展受到了严重的制约。相较于增大其本身的电池能量密度以提高续航能力而言,降低由汽车外形引起的气动阻力,从而提高纯电动汽车的续驶里程更不失为一种节能环保的好途径。本文选取纯电动轿车进行针对性的外形参数气动阻力影响研究。由于纯电动轿车与传统型轿车在动力与传动技术等方面的差异,引起了车身结构的区别,因此在面临新的条件与限制因素的情况下,有必要对其进行重新的车身总布置研究,近一步研究这些外形参数对纯电动轿车气动阻力的影响。首先,本文对纯电动轿车的主要尺寸、分布及功用进行总结,并探讨在传统轿车以及全新纯电动轿车构架下的电池布置形式的优劣势,在满足中级轿车车身总布置结构条件下,给出了纯电动轿车的空气动力学研究尺寸空间。本文选用Driv Aer轿车模型作为具体研究对象,以汽车风洞实验数据为基准,确定轿车外流场数值仿真方案的各参数,奠定全文数值仿真的研究基础。在此基础上对轿车外流场进行气动特性分析,提出影响纯电动轿车气动阻力的外形参数。基于纯电动轿车外形的空气动力学研究空间,以及所提出的影响气动阻力的外形参数,对纯电动轿车进行整体最佳化研究,选用车身横纵截面曲线上的七个参数控制关键点作为整体设计的参数变量,进行了二十组最优拉丁超立方试验设计,利用三种近似模型建立参数变量与目标函数之间的响应关系,进行可信性分析后,确定R2值为0.950(超过标准值0.9)的克里金近似模型为本方案最佳近似模型,并进一步利用自适应模拟退火算法进行方案寻优。经过寻优后最优方案预测值与实际CFD计算值之间的误差值仅为0.46%,在可接受范围内。经过整体最佳化后的纯电动轿车整车气动阻力系数(9值由0.25883降至0.23592,降低了8.85%。在整体最佳化研究的基础上,又进行了细部优化的研究。选取车头、车顶、车尾三处分别建立控制体,共设置八个参数变量进行研究。选用最优拉丁超立方试验设计方法设计了六十组方案,同样经过可信性分析后确定R2值为0.975的克里金近似模型为最佳近似模型,并进一步利用自适应退火算法对方案寻优。最终所确定的寻优方案预测值与实际计算值之间的误差值为仅0.45%在可接受范围内。经细部优化后,流线型系数Cd*A由0.50793降至0.48438,降低了4.64%;最终方案较原车型的气动阻力系数Cd值降低了13.58%,流线型系数Cd*A值降低了13.13%。综上,基于对纯电动轿车空气动力学研究空间,在全新构架下对其进行外形参数的气动阻力研究,整体最佳化与细部优化均取得了良好的降阻效果,说明纯电动轿车仍有很大的降阻空间,而对各外形参数结果的分析也将对纯电动轿车今后的气动阻力研究做出有益铺垫。
[Abstract]:Facing the dual pressure of environment and energy, green energy is increasingly becoming the general trend of future development. The zero emission and pollution-free electric vehicles are becoming more and more popular. However, due to the imperfect supporting facilities, the driving range is difficult to meet people's daily needs and other problems, and the development has been severely restricted. In order to improve the battery energy density, it is a good way to reduce the aerodynamic drag caused by the shape of the car, so as to improve the driving range of the pure electric vehicle, it is a good way to save energy and environmental protection. In this paper, a pure electric car is selected to study the effect of the aerodynamic drag on the specific parameters of the car. The difference between power and transmission technology causes the difference between the body structure, so in the face of new conditions and restrictions, it is necessary to study the general layout of the body, and study the impact of these parameters on the aerodynamic drag of a pure electric car. First, the main dimensions of the pure electric car are in this paper. The distribution and function are summarized, and the advantages and disadvantages of the battery layout in the traditional car and the new pure electric car frame are discussed. The aerodynamic size space of the pure electric car is given under the condition of meeting the general layout of the medium car body, and the Driv Aer car model is selected as the specific research object. According to the experimental data of the car wind tunnel, the parameters of the numerical simulation scheme of the car outflow field are determined, and the research foundation of the full text numerical simulation is laid. On the basis of this, the aerodynamic characteristics of the car outflow field are analyzed, and the aerodynamic drag of the pure electric car is proposed. The overall optimization of the pure electric car is studied and the seven key control points on the cross section curve of the body are selected as the parameter variables of the whole design. Twenty sets of optimal Latin hypercube test are designed, and the parameter variables and the target functions are established with three approximate models. After the analysis of the response relationship between the numbers, the Krikin approximation model with the R2 value of 0.950 (exceeding the standard value 0.9) is the best approximate model of the scheme, and the adaptive simulated annealing algorithm is further used to optimize the scheme. The error value between the optimal scheme and the actual CFD value is only 0.46% after optimization. In the acceptable range, the aerodynamic drag coefficient of a pure electric car after the overall optimization (9 values decreased from 0.25883 to 0.23592, reduced the study of 8.85%. on the basis of the overall optimization, and then carried out a detailed optimization study. The control bodies were set up in three parts of the car head, the roof and the tail of the car respectively, and the selection of eight parameter variables was studied. " Sixty groups of schemes are designed with the optimal Latin hypercube test design method. The Kriging approximate model with the R2 value of 0.975 is determined as the best approximation model after the reliability analysis, and the adaptive annealing algorithm is further used to optimize the scheme. The error value between the premeasured value and the actual calculated value is only 0. .45% is within the acceptable range. After optimization, the streamline coefficient Cd*A is reduced from 0.50793 to 0.48438, which is reduced by 4.64%. The final scheme is lower than the original model's aerodynamic drag coefficient Cd value by 13.58%, the streamline coefficient Cd*A value is reduced in 13.13%., based on the aerodynamic research space of the pure electric car, and under the new framework, it is carried out under the new frame. The aerodynamic drag of the shape parameters, the overall optimization and the detail optimization have achieved a good drag reduction effect. It shows that the pure electric car still has a large drag reduction space, and the analysis of the results of the various parameters will also make a useful paving for the study of the aerodynamic drag of the pure electric car in the future.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U461.1

【相似文献】

相关期刊论文 前10条

1 晓徐;电动轿车离我们有多远[J];上海汽车;2000年04期

2 郭明;电动轿车用稀土永磁无刷直流电机驱动系统的研制[J];航空制造技术;2001年04期

3 王林;日本电动轿车向微型发展[J];汽车维修;2001年04期

4 ;新型无污染电动轿车[J];军民两用技术与产品;2002年12期

5 曹卫民;;加快太阳能混合电动轿车的开发,迎接国民车时代的到来(二)——论太阳能混合电动轿车的开发[J];轻型汽车技术;2005年Z2期

6 张庆文;韩忠浩;薛盛兴;;电动轿车造型如何融合中国元素[J];辽宁工业大学学报(自然科学版);2010年06期

7 ;电动轿车无线充电正逐步走向可能[J];农业装备与车辆工程;2012年06期

8 Dieter Gudjons;倪曲;;电动轿车生产技术现状[J];广东科技;1994年01期

9 ;新型电动轿车[J];汽车工艺与材料;1995年05期

10 王利公;电动轿车——二十一世纪的选择[J];中国技术监督;1995年10期

相关会议论文 前1条

1 伍理勋;李晓光;郭淑英;张逸成;陶生桂;姚勇涛;;燃料电池电动轿车主DC/DC电源装置的研制[A];2002中国电动汽车研究与开发[C];2002年

相关重要报纸文章 前10条

1 戴树超邋王召华 祝丽娜;武城“柯莱沃”电动轿车抢滩美国[N];德州日报;2007年

2 洪敬谱;电动轿车无牌上路隐患多[N];中国消费者报;2008年

3 房士阁;时风电动轿车通过专家评审验收[N];中国工业报;2008年

4 房士阁邋本报记者 许继升;时风驶出“人民轿车”[N];中国县域经济报;2008年

5 周文明;适应节能减排时风推出电动轿车[N];消费日报;2008年

6 丁玲娜;皖产铁锂电动轿车京城受青睐[N];安徽日报;2008年

7 凌军辉;买了电动轿车为什么不敢上路[N];经济参考报;2008年

8 记者 董学清;中国产电动轿车进入美国市场[N];人民日报海外版;2009年

9 凌军辉;电动轿车不敢上路[N];中国质量报;2008年

10 建春 江萱 季煜;扬州电动轿车亮相气候大会[N];扬州日报;2009年

相关博士学位论文 前1条

1 方运舟;纯电动轿车制动能量回收系统研究[D];合肥工业大学;2012年

相关硕士学位论文 前10条

1 张会真;纯电动轿车传动系统优化与仿真[D];河北工业大学;2015年

2 薛明欣;外形参数对纯电动轿车气动阻力的影响研究[D];吉林大学;2016年

3 付成伟;电动轿车用电机控制系统研究[D];吉林大学;2010年

4 刘小飞;纯电动轿车动力系统参数匹配及电机控制策略研究[D];吉林大学;2011年

5 詹沛枝;微型电动轿车的建模方法与仿真分析[D];广东工业大学;2011年

6 王泽平;电动轿车总体设计与性能仿真研究[D];合肥工业大学;2007年

7 吴雪;纯电动轿车动力系统参数匹配方法研究[D];吉林大学;2013年

8 付雅军;电动轿车用永磁同步电机的温度场分析[D];辽宁工业大学;2014年

9 刘健;纯电动轿车驱动电机性能与结构参数匹配研究[D];吉林大学;2014年

10 董欣阳;增程式电动轿车动力系统控制策略设计及优化研究[D];合肥工业大学;2015年



本文编号:1964332

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/1964332.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e57fd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com