复杂避障约束下自主驾驶轨迹优化
本文选题:自主泊车 + 时空分割 ; 参考:《浙江大学》2016年硕士论文
【摘要】:和人类驾驶员相比,无人车能够更加全面的掌握即时路况并及时对汽车巡航状态进行调整,从而改善交通拥堵状况、避免了人为失误造成的交通事故和伤亡,因此近些年来无人驾驶技术发展迅速。许多半自动驾驶技术在汽车上已经得到了大规模的普及,比如紧急制动,定速巡航和车道保持等。然而,在行车环境建模、避障轨迹优化等方面还需要深入的研究。如车载传感器精度有限的情况下如何对障碍环境建模,如何处理环境中意外出现的动态障碍物,如何针对不同的泊车位实现标准化的轨迹优化算法设计,如何优化智能无信号灯路口下的多车避障轨迹等都是值得研究的问题。本文用动态优化全联立算法对上述问题做了一些研究。主要内容和成果如下:1.对城市环境下的自主泊车问题,采用MPCC和R函数方法对车位环境建模,与车辆运动学模型、物理约束共同构成了行车系统模型,构造了联立框架下的自主泊车动态优化命题。采用有限元正交配置法将原命题离散化为非线性数学规划问题,由非线性求解器高效求解得到具有时间信息的可直接用于指导车辆跟踪的泊车轨迹。2.针对自主泊车轨迹动态优化命题含有较多复杂约束可能引起的求解困难,提出了时空分割策略来增强优化算法的收敛性。通过在轨迹优化命题中引入吸引区、塌缩区来分割泊车空间,将非线性的复杂环境约束在割裂空间下进行简化,重构泊车轨迹优化命题。仿真实验证明了时空分割策略的有效性。3.在城市环境下基于信息完整假设进行多车轨迹优化的全局规划算法研究。在多车模型、环境模型下融合了车-车、车与动态可预测障碍物的复杂避障约束,构造多车协作避让轨迹优化命题。数值实验表明了基于全联立的全局规划算法的有效性。4.对于环境感知不完整的车辆轨迹规划问题,基于障碍环境预测模型进行局部滚动优化。运用假设静态法、速度切线预测法、完整预测法对障碍环境建模,根据障碍车辆进出我车的冲突检测域来切换重构行车系统轨迹优化命题,并比较了预测模型对车辆避障性能的影响。
[Abstract]:Compared with human drivers, the UAV can master the real-time traffic conditions more comprehensively and adjust the vehicle cruising state in time, thus improving the traffic congestion and avoiding the traffic accidents and casualties caused by human error. As a result, driverless technology has developed rapidly in recent years. Many semi-autonomous driving techniques have been widely used in automobiles, such as emergency braking, constant speed cruising and lane maintenance. However, further research is needed in traffic environment modeling and obstacle avoidance trajectory optimization. For example, how to model the obstacle environment, how to deal with the unexpected dynamic obstacles, how to design the standardized trajectory optimization algorithm for different parking spaces, how to model the obstacle environment under the condition of limited precision of the vehicle sensor, how to deal with the unexpected dynamic obstacles in the environment, It is worth studying how to optimize the trajectory of multi-vehicle obstacle avoidance at the intersection of intelligent signal-free. In this paper, the dynamic optimization algorithm is used to study the above problems. The main contents and results are as follows: 1. For the problem of autonomous parking in urban environment, the vehicle parking environment is modeled by MPCC and R function method, and the vehicle kinematics model and physical constraints are combined to form the vehicle system model, and the dynamic optimization proposition of autonomous parking under the simultaneous frame is constructed. The finite element orthogonal collocation method is used to discretize the original proposition into a nonlinear mathematical programming problem. The nonlinear solver is used to efficiently solve the parking trajectory with time information which can be directly used to guide the vehicle tracking. In view of the difficulty of solving the dynamic optimization proposition of autonomous parking trajectory with more complex constraints, a spatio-temporal segmentation strategy is proposed to enhance the convergence of the optimization algorithm. By introducing attraction region and collapsing area into the trajectory optimization proposition, the parking space is separated, and the nonlinear complex environment constraint is simplified in the split space, and the parking trajectory optimization proposition is reconstructed. The simulation results show that the spatio-temporal segmentation strategy is effective. The global planning algorithm for multi-vehicle trajectory optimization based on the assumption of information integrity in urban environment is studied. Under the multi-vehicle model and environment model, the complex obstacle avoidance constraints of vehicle-vehicle, vehicle-vehicle and dynamic predictable obstacles are combined, and the proposition of multi-vehicle cooperative avoidance trajectory optimization is constructed. Numerical experiments show the effectiveness of the global programming algorithm based on full synchronization. 4. 4. For the vehicle trajectory planning problem with incomplete environmental perception, the local rolling optimization based on the obstacle environment prediction model is carried out. Using the hypothesis static method, the velocity tangent prediction method, the complete forecast method to model the obstacle environment, according to the obstacle vehicle entering and leaving our vehicle conflict detection domain to switch the reconstruction train system trajectory optimization proposition, The effect of prediction model on vehicle obstacle avoidance performance is compared.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.6
【参考文献】
相关期刊论文 前7条
1 韩鹏;单家元;;基于Radau伪谱法的重复使用运载器再入轨迹优化(英文)[J];控制理论与应用;2013年08期
2 林蓁蓁;李庆;梁艳菊;陈大鹏;;一种基于路径规划的自动平行泊车算法[J];计算机应用研究;2012年05期
3 郭伟;杨明;王冰;王春香;;基于博弈论的路口多车协作算法[J];华中科技大学学报(自然科学版);2011年S2期
4 肖永剑;杨建国;王兆安;;基于占先度的驾驶员冲突避碰决策模型[J];交通运输工程学报;2009年05期
5 郭孔辉;姜辉;张建伟;丁海涛;;基于模糊逻辑的自动平行泊车转向控制器[J];吉林大学学报(工学版);2009年S2期
6 吴坚,王小椿,姜虹,郑康平,李润方;多边形的隐函数表示法[J];计算机工程与应用;2003年32期
7 刘金义,张红玲;R-函数理论介绍及其应用评述[J];工程图学学报;2001年02期
相关博士学位论文 前7条
1 朱株;基于三维数据面向无人车导航的非结构化场景理解[D];浙江大学;2014年
2 孙勇;基于改进Gauss伪谱法的高超声速飞行器轨迹优化与制导[D];哈尔滨工业大学;2012年
3 陈杨;基于微分—代数混合方程机理模型的非线性预测控制[D];浙江大学;2011年
4 王志强;微分代数方程动态优化问题的快速求解策略研究[D];浙江大学;2012年
5 陈伟锋;大规模复杂过程系统的高性能优化理论与方法研究[D];浙江大学;2011年
6 姜辉;自动平行泊车系统转向控制策略的研究[D];吉林大学;2010年
7 王可心;大规模过程系统非线性优化的简约空间理论与算法研究[D];浙江大学;2008年
相关硕士学位论文 前6条
1 颜丰琳;自由飞行模式的多飞行器轨迹优化[D];浙江大学;2015年
2 李勇;无信号灯十字交叉口协作车辆控制研究[D];北京理工大学;2015年
3 黄森;动态优化问题的移动有限元算法研究[D];浙江大学;2012年
4 高航;自动垂直泊车方法研究[D];中国科学技术大学;2011年
5 孟繁微;车辆垂直泊车转向控制算法研究[D];吉林大学;2011年
6 王芳成;自动平行泊车系统的研究[D];中国科学技术大学;2010年
,本文编号:2026325
本文链接:https://www.wllwen.com/kejilunwen/qiche/2026325.html