乘用车后扭力梁悬架系统动态特性仿真与试验研究
[Abstract]:The interaction between the tire and the uneven road is the main source of vibration when the vehicle is moving at medium speed. The excitation force is transferred to the suspension through the tire system, and then transmitted to the body after the suspension system's cushioning and damping action, thus causing the body vibration and the vehicle interior noise. In engineering practice, it has become a universal problem that the front (FF) passenger car with rear torsion beam suspension system appears obvious noise in the course of middle and low speed driving. How to optimize the design of suspension system to improve the performance of vehicle NVH has attracted wide attention in the industry. In this paper, the rear torsion beam suspension system which is widely used in medium and low class passenger cars is taken as the research object. The dynamic characteristics of the suspension system and the vibration analysis of the whole vehicle based on the dynamic characteristics of the suspension system are deeply studied by means of the combination of simulation and test. Taking the stiffness of rubber bushing at the joint of suspension system and body as the key factor, the influence law of improving the modal distribution of suspension system and reducing the vibration response of chassis is studied. In order to reflect the inherent characteristics and vibration transfer characteristics of suspension system objectively and comprehensively, the dynamic characteristics of torsional beam suspension system are tested and analyzed, and the test modal parameters of the system are obtained. Vibration transfer function (VTF) and characteristic parameters of each elastic damping element. The acquisition of the above parameters also provides experimental data support for simulation modeling and the basis for checking the model. According to the principle of finite element, the dynamic characteristics of torsion beam suspension system are simulated and analyzed with Hyper Works software as the simulation platform, and the equivalent expression of the characteristics of each component in finite element modeling is discussed emphatically. The simplified simulation principle of each constraint boundary. The evaluation method of dynamic stiffness of rubber bushing and the method of replacing the boundary of complex tire system with iron tooling are put forward. The validity of the method is verified by the test data. Based on the above finite element model of torsional beam suspension system, the stiffness of the bushing installed at the joint of suspension and body is taken as a single variable to analyze the sensitivity of the low-order modal frequency of suspension system. The relationship between the stiffness direction of the bushing and the mode shape of the suspension system is discussed, and the variation of the modal distribution of the suspension system with the stiffness of the bushing is revealed. The results show that the first three modes of suspension system are mainly bending in Z direction and X direction, so the modal frequency is greatly affected by the stiffness variation in these two directions. In order to further reveal the relationship between the dynamic characteristics of suspension system and vehicle vibration, the modeling work of front suspension subsystem, steering subsystem, tire subsystem and vehicle body subsystem is added based on the torsion beam suspension subsystem. Build the parameterized model of the whole vehicle. On this basis, the variation of vertical vibration acceleration response of the chassis with the stiffness of the mounting bushing is discussed qualitatively, and the validity is verified by the test results of the real vehicle road. It is shown that reducing the Z-direction stiffness of the bushing direction is beneficial to the reduction of the mid-low frequency vibration in the vehicle. To sum up, the dynamic characteristics of torsional beam suspension system and the influence of key factors on the dynamic characteristics are analyzed comprehensively in this paper. At the same time, the influence of the stiffness characteristics of the bushing on the vibration of the whole vehicle is discussed, which provides guidance for the study of the vibration reduction of the road excitation transmitted to the body through the suspension system, and then improves the NVH performance of the whole vehicle.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.33
【相似文献】
相关期刊论文 前10条
1 于增亮;张立军;罗鹰;;一种新的橡胶衬套半经验动力学模型[J];汽车技术;2010年08期
2 石少亮;吴伟蔚;黄虎;刘新田;;车用橡胶衬套的非线性有限元分析[J];机械设计与制造;2011年09期
3 周炜;黄友剑;李建林;;基于参数化有限元的橡胶衬套结构优化设计[J];特种橡胶制品;2012年04期
4 屈滨;载重汽车后悬挂部件——橡胶衬套[J];中国橡胶;2005年16期
5 郭孔辉;王爽;丁海涛;张建伟;;后悬架非对称式橡胶衬套弹性耦合特性[J];吉林大学学报(工学版);2007年06期
6 于增亮;张立军;余卓平;;橡胶衬套力学特性半经验参数化模型[J];机械工程学报;2010年14期
7 韩传军;张杰;刘洋;;螺杆钻具橡胶衬套的生热及热力耦合分析[J];四川大学学报(工程科学版);2012年06期
8 黄鹏程;王聪昌;陈凯;;车用橡胶衬套疲劳的有限元分析[J];橡胶工业;2013年08期
9 方明霞;谈军;许光;;汽车橡胶衬套随机疲劳分析[J];汽车工程;2013年10期
10 赵正平;耐温耐腐蚀蝶阀橡胶衬套[J];润滑与密封;1989年03期
相关会议论文 前3条
1 张文飞;危银涛;;悬架橡胶衬套静动态特性测试与有限元仿真[A];北京力学会第17届学术年会论文集[C];2011年
2 苗贺;刘艳华;戴峻;;发动机悬置橡胶衬套优化设计[A];第十届沈阳科学学术年会论文集(信息科学与工程技术分册)[C];2013年
3 张云清;项俊;孙营;陈立平;;基于正交试验的虚拟样车平顺性分析及参数选择[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
相关重要报纸文章 前1条
1 陈伯康;夏利轿车转方向盘时车体震摆[N];中国汽车报;2002年
相关博士学位论文 前4条
1 刘伟;客车悬架橡胶衬套对整车性能影响研究与多目标优化[D];吉林大学;2012年
2 陈宝;悬架橡胶衬套静动特性研究及其应用[D];西南交通大学;2014年
3 杨树凯;橡胶衬套对悬架弹性运动与整车转向特性影响的研究[D];吉林大学;2008年
4 李凌阳;车辆悬架系统参数辨识、建模及耐久性分析优化[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 苏志勇;轴对称橡胶衬套高精度模型的建立及应用[D];吉林大学;2007年
2 石少亮;随机振动激励下汽车副车架用橡胶衬套的力学特性分析[D];上海工程技术大学;2011年
3 王培;汽车悬架减振器支柱总成建模与仿真研究[D];辽宁工业大学;2016年
4 李欣;基于刚柔耦合模型的汽车悬架性能分析及优化[D];河北工业大学;2015年
5 邱实;悬架橡胶衬套对汽车平顺性影响的多体动力学研究[D];北京理工大学;2016年
6 王迪;基于部件特性的麦弗逊式悬架动力学建模研究[D];吉林大学;2016年
7 罗勇;客车振动分析及橡胶衬套建模研究[D];华中科技大学;2014年
8 范大力;乘用车后扭力梁悬架系统动态特性仿真与试验研究[D];西南交通大学;2016年
9 王娜;面向汽车耐久性分析的底盘橡胶衬套建模研究[D];吉林大学;2011年
10 冯保进;汽车橡胶衬套模型及参数辨识方法的研究[D];吉林大学;2015年
,本文编号:2216251
本文链接:https://www.wllwen.com/kejilunwen/qiche/2216251.html