车辆电液混合动力传动系统研究
[Abstract]:In the face of the contradiction between the rapid development of China's automobile industry and environmental pollution, the pure electric vehicle (EV) with zero emission and no pollution has attracted the attention of our government. The development of new energy vehicles represented by pure electric vehicles (EV) has become an important direction of automobile industry. In the research of new energy vehicle, regenerative braking technology is one of the key technologies. However, when the pure electric vehicle starts to regenerate braking and drive, the motor will produce a very large impulse current. If the current is fed directly into the battery, it will have a great impact on the battery life. In order to solve the problem of high current charge and discharge of battery, composite energy storage system is usually used. The super capacitor has the advantages of high power density, short charge and discharge time, but its internal resistance is small, the battery is not easy to manage, and it is difficult to match the battery parameters, the security is poor, and the cost is high. There is no electrical connection between the hydraulic system and the battery in the battery hydraulic composite energy storage system, and the hydraulic system has the advantages of super capacitance, low cost and mature technology. Based on the research of braking process and compound energy storage system of pure electric vehicle, a new type of electro-hydraulic hybrid power transmission system is designed in this paper, and the parameter matching design is carried out. The control strategy of regenerative braking is formulated, the integrated modeling of the system and the joint simulation are analyzed. The main work of this paper is as follows: (1) the characteristics of the vehicle electro-hydraulic hybrid drive system with different structure are analyzed, the structure scheme of the whole vehicle transmission system suitable for this paper is determined, and the hydraulic system control loop scheme is designed. Then the parameter matching design of the key parts of the whole power transmission system is carried out by using the parameter matching method based on the cycle working condition, including the motor, the battery, Hydraulic pump / motor (quadratic element parts), accumulator and transmission, etc. (2) the dynamics of braking and wheel dynamics of the whole vehicle are analyzed, in order to maximize the recovery of braking energy under the condition of satisfying the braking safety, According to the braking regulations and dynamic conditions, the braking force distribution of front and rear axle, the threshold value of braking strength and the judging strategy of braking mode are determined. Small strength braking force distribution strategy and ABS anti-lock braking control strategy based on Fuzzy-PID. (3) based on the advantages of mathematical modeling of Matlab/simulink software, the vehicle model, motor model, battery model, control system model are established. Based on the advantages of AMEsim in hardware modeling, the friction braking system model and the hydraulic regenerative braking system model are established. The feasibility of the system is analyzed on the AMEsim-simulink platform. (4) the dynamic response and efficiency of the hydraulic regenerative braking system under the driving and braking conditions are analyzed, and the dynamic response of the hydraulic regulating unit under sinusoidal excitation is analyzed. Finally, under the condition of different road adhesion coefficient and braking strength, the proposed control strategy is simulated and analyzed on the basis of the established joint simulation model. In this paper, the design and parameter matching of vehicle electro-hydraulic hybrid drive system are carried out, and the regenerative braking control strategy for electro-hydraulic hybrid power system is put forward, which makes the hydraulic system and battery system coordinate well. It can not only avoid the influence of high current charge and discharge on the life of power battery, but also increase the driving range of pure electric vehicle. It provides a new idea for the design of regenerative braking system of pure electric vehicle and has a good application prospect.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.2
【相似文献】
相关期刊论文 前10条
1 何仁,王宪英,王若平;混合动力传动系统匹配评价指标的探讨[J];汽车技术;2005年01期
2 吴光强,鞠丽娟,罗邦杰;车辆混合动力传动系统开发现状与展望[J];汽车工程;1997年02期
3 何仁,孙龙林,吴明;汽车新型储能动力传动系统节能机理[J];长安大学学报(自然科学版);2002年03期
4 孙东明,项昌乐;面向对象建模在车辆动力传动系统中的应用[J];车辆与动力技术;2003年04期
5 吴憩棠;汽车动力传动系统铸件的浸渗技术[J];汽车与配件;2004年11期
6 王世新;徐勇;;混合动力电动汽车动力传动系统的研究[J];机械研究与应用;2005年06期
7 文孝霞;杜子学;栾延龙;;汽车动力传动系统匹配研究[J];重庆交通学院学报;2006年01期
8 Alexander Craig;;新型封装技术实现动力传动系统的智能功率化[J];世界电子元器件;2006年09期
9 赵海波;项昌乐;耿冲;孙恬恬;;履带车辆动力传动系统扭振的测试与分析[J];机械设计与制造;2007年06期
10 赵海波;项昌乐;刘辉;;车辆动力传动系统扭转振动研究的理论与方法[J];新技术新工艺;2007年04期
相关会议论文 前5条
1 何仁;王若平;王宪英;;混合动力传动系统匹配评价指标的探讨[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
2 魏来生;赵春霞;;某4X4车动力传动系统扭振计算与试验[A];全国先进制造技术高层论坛暨第八届制造业自动化与信息化技术研讨会论文集[C];2009年
3 邵朋礼;王剑;;车辆动力传动系统有限元结构分析[A];第四届中国CAE工程分析技术年会论文集[C];2008年
4 韩晓成;王晓娟;嵇晓霞;;汽车动力传动系统的仿真分析与研究[A];第九届中国CAE工程分析技术年会专辑[C];2013年
5 李春明;魏来生;江磊;;四轮驱动特种车辆动力传动扭振分析计算[A];全国先进制造技术高层论坛暨第七届制造业自动化与信息化技术研讨会论文集[C];2008年
相关重要报纸文章 前5条
1 龚春全;我国双速比动力传动系统研制取得突破[N];中国船舶报;2009年
2 唐伟;汽车动力传动系统动态试验系统完成[N];科技日报;2005年
3 祁培坚;通用公司公布发动机发展战略[N];中国汽车报;2004年
4 李永钧;汽车文明跑输汽车增速[N];中国工业报;2014年
5 陈玉金 汪向荣;仪征崛起国际化动力系统产业群[N];新华日报;2006年
相关博士学位论文 前9条
1 金涛涛;混合动力传动系统建模及优化控制研究[D];北京交通大学;2014年
2 陈龙安;混合动力汽车动力传动控制系统的研究与开发[D];同济大学;2007年
3 赵光明;周向长弧形弹簧式双质量飞轮非线性扭转减振特性研究[D];武汉理工大学;2013年
4 黄粉莲;营运货车动力传动系统仿真及优化[D];中国农业大学;2014年
5 孙宏图;基于循环工况的城市公交客车动力传动系统参数研究[D];大连理工大学;2009年
6 王印束;基于动力传动系统一体化的双离合器自动变速器控制技术研究[D];吉林大学;2012年
7 陈雷;轿车双质量飞轮动力特性研究[D];武汉理工大学;2009年
8 李岳;机械动力传动系统核基故障识别与状态预测技术研究[D];国防科学技术大学;2007年
9 叶明;基于机械自动变速的轻度混合动力传动系统综合控制研究[D];重庆大学;2006年
相关硕士学位论文 前10条
1 刘强;基于发动机激励的汽车起步离合器接合的动力传动系统扭转振动研究[D];长安大学;2015年
2 陈长勇;基于城市循环工况的天然气城市客车动力传动系统优化匹配研究[D];长安大学;2015年
3 罗辉辉;双质量飞轮扭转特性及试验研究[D];南京理工大学;2015年
4 刘雪媛;高原环境下动力传动系统动态过程参数匹配研究[D];北京理工大学;2015年
5 余振奇;车辆动力传动系统结构动力学及敏感度分析研究[D];北京理工大学;2015年
6 汪洋青;基于GT-SUITE的某SUV动力传动系统优化匹配分析[D];江西农业大学;2015年
7 路胜利;基于模型的某轿车动力传动系统匹配与优化[D];吉林大学;2015年
8 崔丛学;基于AVL CRUISE的某小型货车动力传动系统优化匹配[D];青岛理工大学;2015年
9 杨兆铭;轮式车辆混合动力传动系统设计分析及应用[D];重庆大学;2015年
10 王维;插电式四驱混合动力汽车的匹配与仿真建模[D];重庆大学;2015年
,本文编号:2255654
本文链接:https://www.wllwen.com/kejilunwen/qiche/2255654.html