当前位置:主页 > 科技论文 > 汽车论文 >

机场摆渡车动力电池荷电状态估算算法研究

发布时间:2018-11-19 21:26
【摘要】:车载动力电池的荷电状态(state of charge,SOC)不仅影响电池的循环寿命,而且影响整车的安全性。快速而准确的荷电状态估算是电源管理系统的重要组成部分。通过对实验数据进行曲线拟合,分析了荷电状态的影响因素。将扩展卡尔曼滤波算法(extended kalman filter,EKF)和无迹卡尔曼滤波算法((unscented kalman filter,UKF)应用到动力电池SOC估算中,针对机场电动摆渡车特殊的运行特点,设计合理的SOC估算算法,用MATLAB进行仿真并分析算法的快速性和准确性。
[Abstract]:(state of charge,SOC) not only affects the cycle life of the battery, but also affects the safety of the whole vehicle. Fast and accurate state estimation is an important part of power management system. Through curve fitting of experimental data, the influence factors of charged state are analyzed. The extended Kalman filter algorithm (extended kalman filter,EKF) and the unscented Kalman filter algorithm (unscented kalman filter,UKF) are applied to the estimation of power battery SOC. A reasonable SOC estimation algorithm is designed for the special operation characteristics of the airport electric ferry vehicle. MATLAB is used to simulate and analyze the speed and accuracy of the algorithm.
【作者单位】: 中国民航大学航空地面特种设备民航研究基地;中国民航大学机场学院;
【分类号】:U469.6;V351.35;TM912


本文编号:2343467

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/2343467.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户60ba5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com