胶轮导轨电车车辆动力学性能研究
[Abstract]:With the rapid development of the city, the rapid increase of the number of motor vehicles leads to the increase of urban traffic pressure, the traditional road traffic mode can no longer meet the travel needs of people, forcing the construction of urban traffic system tend to layer by layer. A diversified development model. At present, subway, light rail and bus rapid transit are the main tools to alleviate the urban traffic pressure. Subway, light rail system capacity is large, but construction, operation and maintenance costs are high, not suitable for low population flow area. The total investment of bus rapid transit construction is small, but its transport capacity is low, and can not satisfy the area with high passenger flow. Therefore, the modern tram, as a new type of rail transit vehicle with low and middle traffic volume between bus rapid transit and light rail, is more suitable for urban operation because of its small total investment in construction. Because there will be vibration and noise between the wheels and rails of the steel wheel-rail tram, which will disturb the people living in the city, the scholars have developed the rubber-wheel guide rail trolley on the basis of it. Compared with the steel wheel-rail tram, the rubber-wheel tram has the advantages of small vibration, high ride comfort, strong curve passing capacity, no need to break down and build the building around the route, strong climbing ability, and so on, which is favored by more and more cities. Firstly, the paper introduces the development history and application of urban tram, and compares two different modes of modern tram, especially the structure of vehicle bogie, the articulated mode and power of adjacent vehicles. The guiding principle of non-power guiding device. Secondly, the stress of rubber wheel is analyzed, and the radial vibration model and lateral vibration model of rubber wheel are established. In the modeling process, the influence of rubber wheel longitudinal slip on tire force is considered. According to the dynamics analysis theory of steel wheel-rail type vehicle, this paper analyzes the force condition of the car system with rubber wheel guideway, and lists the differential equations of vehicle dynamics, mainly aimed at the car body of vehicle headcar, the middle car body and the non-power bogie. The dynamics simulation model of rubber-wheel tram is established by using multi-body dynamics software SIMPACK, and the secondary factors are simplified in the process of modeling. At the same time, according to the automobile dynamics standard and the steel wheel-rail type vehicle dynamics standard, the related dynamics standard of the rubber wheel guideway trolley has been worked out. Next, the structure of the guiding device in the power bogie of the rubber-wheel guideway trolley is studied in detail. By establishing the mathematical model and the dynamic simulation model of the guiding device, the rationality of the structure of the guiding device is checked, so that the left, the left, The angular relationship between right rubber wheels satisfies Ackerman's theorem. Finally, the dynamic performance of rubber-wheel tram under normal operating conditions, ice and snow conditions and tire burst conditions is analyzed. The results show that the vehicle has good running comfort and curve passing performance under normal operating conditions. In ice and snow conditions, the vehicle ride comfort index is not much different from the normal operating condition, and when the vehicle passes through the curve, the roll angle of the different vehicle body increases obviously, but does not exceed the limit value. The sideslip angle of rubber wheel also increases obviously, even exceeds the limit value, the phenomenon of sideslip appears, and the speed should be reduced properly. When the tire explodes, the vehicle runs smoothly at the speed of 35km/h.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U482.1
【相似文献】
相关期刊论文 前10条
1 沈钢;对车辆动力学仿真软件的考题测试分析[J];铁道车辆;2000年11期
2 臧其吉;轨道车辆动力学性能与轨道条件密切相关[J];电力机车与城轨车辆;2004年01期
3 钱立新;“2005北京国际车辆动力学高层学术论坛”在京举行[J];中国铁道科学;2005年06期
4 王新锐;陈政南;苗晓雨;张天婴;;青藏铁路大型设备运输车辆动力学性能分析[J];铁道机车车辆;2011年02期
5 杨国桢;;松平精——车辆动力学的优秀研究者[J];国外铁道车辆;1985年02期
6 臧其吉;车辆动力学的研究和发展[J];中国铁道科学;1994年02期
7 孙显营,熊坚,杨树忠,杨扬;面向对象的车辆动力学建模及实现[J];云南交通科技;2001年05期
8 程军,高发廷,郭庆波;一种简易实时车辆动力学系统模拟器的开发[J];上海汽车;2001年04期
9 舒兴高,,贺启庸,洪嘉振;铁道车辆动力学与控制问题的研究[J];中国铁道科学;1995年01期
10 贺启庸,倪纯双,王卫东;多体系统动力学与车辆动力学[J];铁道车辆;1995年01期
相关会议论文 前6条
1 杨财;曹明伦;;基于系统特性的车辆动力学建模方法研究[A];2013中国汽车工程学会年会论文集[C];2013年
2 滕万秀;;多车连挂系统动力学性能研究[A];中国铁道学会车辆委员会2004年度铁路机车车辆动态仿真学术会议论文集[C];2004年
3 陈鹏;高亮;许兆义;郝建芳;;LVT轨道对于地铁车辆动力学性能的影响研究[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C];2005年
4 彭丽媛;李晖;居鹤华;;崎岖地形环境中月球车的动力学建模与仿真[A];中国自动化学会控制理论专业委员会B卷[C];2011年
5 郭洪艳;陈虹;张华玉;;车辆动力学数据/机理建模及车速估计应用[A];中国自动化学会控制理论专业委员会D卷[C];2011年
6 宋春元;罗仁;;低温条件悬挂参数变化对动力学性能的影响研究[A];第八届中国智能交通年会论文集[C];2013年
相关博士学位论文 前6条
1 丁建明;车辆动力学性能参数估计方法研究[D];西南交通大学;2012年
2 赵治国;车辆动力学及其非线性控制理论技术的研究[D];西北工业大学;2002年
3 吴振昕;基于总成结构的车辆动力学实时仿真方法的研究[D];吉林大学;2007年
4 李道飞;基于轮胎力最优分配的车辆动力学集成控制研究[D];上海交通大学;2008年
5 魏春雨;模拟器中车辆动力学与六自由度平台联合仿真技术研究[D];浙江大学;2013年
6 苗秀娟;瞬态风荷载下的列车运行安全性研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 唐玉;基于ADAMS的悬挂式单轨车辆动力学分析与侧风影响研究[D];西南交通大学;2016年
2 夏迎旭;胶轮导轨电车车辆动力学性能研究[D];西南交通大学;2016年
3 孙显营;面向对象车辆动力学系统建模研究及应用[D];昆明理工大学;2002年
4 梁志华;跨座式单轨车辆动力学性能评价指标体系研究[D];重庆交通大学;2015年
5 王行聪;跨座式单轨车辆动力学性能仿真分析[D];重庆交通大学;2009年
6 张庆春;车辆动力学关键参数辨识研究[D];华中科技大学;2007年
7 徐学进;基于驾驶模拟器的车辆动力学建模研究[D];武汉理工大学;2007年
8 苏光磊;汽车模拟器车辆动力学仿真软件的设计[D];哈尔滨工业大学;2010年
9 陈鹏飞;十七自由度车辆动力学仿真模型的研究[D];华中科技大学;2011年
10 王芊;基于车辆动力学的弯坡组合路段行车仿真与安全评价[D];南昌大学;2013年
本文编号:2455627
本文链接:https://www.wllwen.com/kejilunwen/qiche/2455627.html