当前位置:主页 > 科技论文 > 汽车论文 >

前副车架自动检具动力学分析与研究

发布时间:2019-06-29 09:41
【摘要】:汽车前副车架生产过程中需要在线快速、高效地检测其几何参数,采用自动检测系统可提高检测效率。在自动检测过程中,利用气缸将检测机构送进到结构件上的孔、轴及其他位置,当相对尺寸变化时,会带动检测机构运动,通过与检测结构连接的传感器读出相应数据,再经过信息处理方法计算出结构件的相关几何参数。但前副车架是形状复杂的薄壁焊接结构件,厚度约为2mm,其定位夹紧和检测时都需要气缸带动相关机构运动,当气缸气压发生变化和波动时对检测结果影响非常大;用于检测的位移传感器对振动非常敏感,而自动检具利用气缸进行定位夹紧和带动检测机构,其振动是不可避免的,这也对检测结果造成了影响。为了解决上述问题,完善自动检测系统,本文主要工作如下:(1)分析前副车架结构的特点,对已有的前副车架自动检测系统用CATIA软件构建其三维模型,分析自动检测系统各构件的结构及检测原理。(2)利用Hyper Mesh进行前副车架网格的划分,建立其有限元模型,将模型导入ABAQUS软件进行动力学分析,包括模态分析及瞬态响应分析,并对结构加气压力载荷,得出不同载荷下各位置的变形情况。(3)由于自动检测过程中气压对检测结果的影响,采用多项式回归分析法,得出气压和前副车架各主要尺寸的偏差关系式,利用粒子群优化算法,将前副车架主要尺寸的总体偏差和作为适应度函数,迭代寻优得最佳气压0.4578MPa。(4)通过研究0.4578MPa气压载荷下稳定加强板的瞬态动力学分析结果,发现测量时刻的选取对于尺寸测量精度有较大的影响。通过分析最优气压下稳定加强板三个安装孔和左侧孔各时刻的位移变形,确定传感器数据读取的最佳时间是在卸载载荷2s左右。前副车架自动检测系统在汽车生产现场使用情况表明,自动检测系统可以胜任检测要求,经过完善的检测系统,具有较高的检测精度,提高了企业的生产效率。
[Abstract]:In the production process of automobile front and auxiliary frame, it is necessary to detect its geometric parameters quickly and efficiently, and the detection efficiency can be improved by using automatic detection system. In the process of automatic detection, the cylinder is used to send the detection mechanism into the hole, shaft and other positions of the structure. When the relative size changes, the detection mechanism will be driven to move, the corresponding data will be read out by the sensor connected to the detection structure, and then the relevant geometric parameters of the structure will be calculated by information processing method. However, the front auxiliary frame is a thin-wall welding structure with complex shape, the thickness is about 2mm, its positioning clamping and detection need the cylinder to drive the movement of the relevant mechanism, when the cylinder pressure changes and fluctuates, it has a great influence on the detection results. The displacement sensor used for detection is very sensitive to vibration, and the automatic detection tool uses cylinder positioning clamping and driving the detection mechanism, its vibration is inevitable, which also has an impact on the detection results. In order to solve the above problems and improve the automatic detection system, the main work of this paper is as follows: (1) the characteristics of the front auxiliary frame structure are analyzed, its three-dimensional model is constructed by CATIA software, and the structure and detection principle of each component of the automatic detection system are analyzed. (2) the grid of the front auxiliary frame is divided by Hyper Mesh, its finite element model is established, and the model is imported into ABAQUS software for dynamic analysis. Including modal analysis and transient response analysis, and the deformation of each position under different loads is obtained by adding gas pressure load of the structure. (3) due to the influence of air pressure on the detection results in the process of automatic detection, the deviation relationship between air pressure and the main dimensions of the front auxiliary frame is obtained by using the multinomial regression analysis method, and the overall deviation of the main dimensions of the front auxiliary frame is taken as the fitness function by using particle swarm optimization algorithm. The optimal pressure 0.4578 MPA is obtained iteratively. (4) by studying the transient dynamic analysis results of stable stiffener under 0.4578MPa pressure load, it is found that the selection of measuring time has a great influence on the accuracy of dimensional measurement. By analyzing the displacement and deformation of the three mounting holes and the left hole of the stable stiffener under the optimal pressure, it is determined that the best time to read the sensor data is about 2s of the unloading load. The application of the automatic detection system of the front auxiliary frame in the automobile production site shows that the automatic detection system can meet the detection requirements. After the perfect detection system, it has high detection accuracy and improves the production efficiency of the enterprise.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.324

【相似文献】

相关期刊论文 前10条

1 叶寅;刘新田;黄虎;;轿车后副车架有限元分析[J];上海工程技术大学学报;2009年04期

2 宛银生;;副车架及其对车辆性能的影响[J];中国城市经济;2010年08期

3 赵德云;成传胜;;基于有限元技术的某型车副车架的优化研究[J];农业装备与车辆工程;2013年07期

4 司景萍;专用汽车副车架的改装分析及设计要点[J];内蒙古公路与运输;1997年01期

5 刁兴丽;;副车架尺寸偏差控制[J];现代零部件;2014年01期

6 王成龙;基于有限元技术的轿车副车架耐久性设计[J];机械设计与制造;2005年09期

7 王成龙;基于有限元技术的轿车副车架耐久性设计[J];上海汽车;2005年04期

8 许勇;;某轿车副车架静力学分析及试验验证[J];传动技术;2006年03期

9 黄鹏程;张林波;柳杨;瞿元;陈伟;;副车架疲劳台架试验的有限元模拟[J];计算机辅助工程;2006年S1期

10 王云;周捫;陈栋华;;基于有限元及试验技术的轿车副车架模态特性分析[J];轻型汽车技术;2006年07期

相关会议论文 前7条

1 黄陆;;轿车常用副车架的作用及主要类型特点[A];推进节能环保,,给力绿色崛起——海南省机械工程学会、海南省机械工业质量管理协会2012年海南机械科技学术报告会交流论文集[C];2012年

2 苟朝阳;陈卫;;关于副车架定位浅析[A];四川省第十一届汽车学术年会论文集[C];2013年

3 沈智达;陈海树;刘双宇;;某车型副车架模态拓扑优化设计[A];结构及多学科优化工程应用与理论研讨会’2009(CSMO-2009)论文集[C];2009年

4 贾腾飞;赵富铎;董曙光;;一种新型搅拌车装配式副车架[A];第九届河南省汽车工程技术研讨会论文集[C];2012年

5 赵学;林涛;王兵;钱建栋;;一种副车架焊接总成的漏焊智能检测方法[A];第十次全国焊接会议论文集(第2册)[C];2001年

6 田凤霞;;基于ANSYS二次开发的自卸车副车架参数化设计[A];第八届中国CAE工程分析技术年会暨2012全国计算机辅助工程(CAE)技术与应用高级研讨会论文集[C];2012年

7 金利芳;李东锋;;小型纯电动汽车全框式前副车架结构设计[A];第九届河南省汽车工程技术研讨会论文集[C];2012年

相关重要报纸文章 前1条

1 河北唐山专用汽车制造有限公司 任小会;专用汽车副车架的改装分析及设计要点[N];中华建筑报;2002年

相关硕士学位论文 前10条

1 孙传阳;轿车副车架的结构特性分析与疲劳寿命预测[D];浙江理工大学;2013年

2 孔祥玉;大方量混凝土搅拌运输车副车架有限元分析及结构优化[D];山东大学;2015年

3 亓玉晓;机场快速调动消防车上装部分主要单元的设计[D];山东农业大学;2015年

4 李金伟;混凝土搅拌车副车架疲劳寿命分析[D];青岛大学;2015年

5 王许州;基于ABAQUS的自卸车副车架结构分析[D];沈阳工业大学;2016年

6 焦欢庆;前副车架自动检具动力学分析与研究[D];中北大学;2016年

7 陈猛;轿车副车架设计与优化[D];合肥工业大学;2010年

8 郑灏;汽车前副车架有限元分析及优化[D];武汉理工大学;2012年

9 万方军;重型汽车副车架结构有限元分析与轻量化研究[D];内蒙古工业大学;2010年

10 成传胜;商务车副车架的有限元分析及优化研究[D];广西工学院;2012年



本文编号:2507726

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/2507726.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户24de6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com