《南京大学学报(自然科学版)》
本文关键词:多隐层BP神经网络模型在径流预测中的应用,由笔耕文化传播整理发布。
参考文献/References:
[1] Tokar A S, Johnson P A. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 1999, 4:232–239.
[2] Sudheer K P, Gosain A K, Ramasastri K S. A data-driven algorithm for constructing artificial neural network rainfall–runoff models. Hydrological processes, 2000, 16 (6): 1325–1330.
[3] Senthil Kumar A R, Sudheer K P, Jain S K, et al. Rainfall–runoff modeling using artificial neural network: comparison of networks types. Hydrological processes, 2004, 19 (6): 1277–1291.
[4] Tayfur G, Singh V P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. Journal of Hydrologic Engineering, 2006, 132:1321–1330.
[5] Antar M A, Elassiouti I, Alam M N. Rainfall–runoff modeling using artificial neural networks technique: a Blue Nile catchment case study. Hydrological processes, 2006, 20 (5): 1201–1216.
[6] Nourani, Vahid, ?zgür Kisi, et al. Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology, 2011,402 (1): 41-59.
[7] Kisi, Ozgur, Jalal Shiri, and Mustafa Tombul. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 2013, 51: 108-117.
[8] Hsu K, Gupta H V, Sorooshian S. Artificial Neural Network Modeling of the Rainfall-Runoff Process[J]. Water resources research, 1995, 31(10): 2517-2530.
[9] 雷晓云,张丽霞,梁新平. 基于MATLAB工具箱的BP神经网络年径流量预测模型研究-以塔城地区乌拉斯台河为例. 水文, 2008, 28(1): 43-46.
[10] Sohail A, Watanabe K, Takeuchi S. Runoff analysis for a small watershed of Tono Area Japan by back propagation artificial neural network with seasonal data. Water resources management, 2008, 22(1): 1-22.
[11] 尚晓三,王栋. 两种不同类型的水文模型在贵州典型岩溶地区的应用. 南京大学学报(自然科学), 2009, 45(3): 409-415.
[12] 崔东文. 多隐层BP神经网络模型在径流预测中的应用.水文, 2013, 33(1): 68-73.
[13] Haykin S. Neural Networks:A Comprehensive Foundation.Newejexsey: Prentice-Hall inc,1999.
[14] 文明,张顶立,房倩等. 地铁车站施工过程中地表沉降的NARXNN时间序列预测模型. 岩土力学与工程学报, 2015,34(增1):3306-3312.
[15] 潘丽莎,程晓卿,秦勇等. 基于NARX神经网络的轮重减载率预测.铁道车辆, 2012, 50(9): 4-7.
[16] 吴启蒙,魏明,庞雷等. 基于NARX神经网络的电子电路电磁脉冲响应建模. 高压电器, 2013, 49(11): 62-68.
[17] Chai L, Qu Y, Zhang L, et al. Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs. International journal of remote sensing, 2012, 33(18): 5712-5731.
[18] Aguilar-Lobo L M, Loo-Yau J R, Rayas-Sánchez J E, et al. Application of the NARX neural network as a digital predistortion technique for linearizing microwave power amplifiers[J]. Microwave and Optical Technology Letters, 2015, 57(9): 2137-2142.
[19] 赵良杰,夏日元,易连兴等. 基于 NARX 模型的岩溶地下河日流量预测.水电能源科学, 2015, 33(5):19-25.
[20] 周毅,徐柏龄. 神经网络中的正交设计法研究.南京大学学报(自然科学), 2001, 37(1): 72-78.
[21] 黄鹍,陈森发,亓霞等. 基于正交试验法的神经网络优化设计. 系统工程理论方法应用, 2004, 13(3): 272-275.
[22] 苑玉凤. 正交试验结果的分析. 统计与决策, 2006, 209(5): 138-139.
[23] 中华人民共和国水利部. 水文情报预报规范. GB/T 22482-2008.
本文关键词:多隐层BP神经网络模型在径流预测中的应用,由笔耕文化传播整理发布。
,本文编号:144188
本文链接:https://www.wllwen.com/kejilunwen/rengongzhinen/144188.html