面向移动智能设备的多特征融合隐式鉴别机制研究
本文关键词:面向移动智能设备的多特征融合隐式鉴别机制研究
更多相关文章: 隐式鉴别 多特征融合 移动智能设备 支持向量机
【摘要】:隐式鉴别机制在解决移动智能设备的安全性与易用性冲突方面具有重要而独特的作用.然而,已有工作通常基于单一特征或动作进行隐式鉴别,仅适合于特定动作、场景和范围.为了解决此问题,本文利用用户使用设备时存在位置、环境、状态、生物和行为特征,提出了一种基于多特征融合的隐式鉴别方案.该方案采集设备内置传感器、生物和行为数据,通过支持向量机方法训练和提取特征,设计多特征融合模型和构建隐式鉴别框架,计算用户身份信任水平,设计差异化安全策略并持续透明地鉴别用户身份.实验验证了该方案的有效性,并且能够平衡安全性与易用性和资源消耗.
【作者单位】: 中国科学院信息工程研究所;北京邮电大学计算机学院;国家计算机网络应急技术处理协调中心;
【关键词】: 隐式鉴别 多特征融合 移动智能设备 支持向量机
【基金】:国家高技术研究发展计划(863计划)(No.2013AA014002) 中国科学院先导专项(No.XDA06030200)
【分类号】:TP309
【正文快照】: 1引言 随着移动技术的快速发展和硬件性能的增强,在移动智能设备(以下称设备)上实现高敏感应用,如股票交易、金融支付、社交软件等;存储和处理高价值信息,如银行卡信息、个人隐私信息等.因此,保证应用和数据安全,特别是防止非授权访问,尤为重要.面向设备的用户身份鉴别方案包
【相似文献】
中国期刊全文数据库 前10条
1 初红霞;王科俊;王希凤;郭庆昌;韩晶;;多特征融合的退火粒子滤波目标跟踪[J];计算机工程与应用;2011年06期
2 顾鑫;王海涛;汪凌峰;王颖;陈如冰;潘春洪;;基于不确定性度量的多特征融合跟踪[J];自动化学报;2011年05期
3 姚红革;杜亚勤;;基于多模式多特征融合粒子滤波视频目标跟踪[J];西安工业大学学报;2012年11期
4 王兰;;基于多特征融合的票据分类技术及应用[J];计算机光盘软件与应用;2013年13期
5 陈增照;何秀玲;杨扬;董才林;;基于多特征融合的票据分类技术及应用[J];计算机工程与应用;2006年09期
6 周斌;林喜荣;贾惠波;宋榕;;多特征融合的手背血管识别算法[J];清华大学学报(自然科学版);2007年02期
7 刘贵喜;范春宇;高恩克;;基于粒子滤波与多特征融合的视频目标跟踪[J];光电子.激光;2007年09期
8 胡全;邱兆文;王霓虹;;基于多特征融合的图像语义标注[J];东北林业大学学报;2008年10期
9 周静;黄心汉;彭刚;;基于多特征融合的飞机目标识别[J];华中科技大学学报(自然科学版);2009年01期
10 沈才梁;许雪贵;许方恒;龙丹;;多特征融合的人脸检测[J];计算机系统应用;2009年11期
中国重要会议论文全文数据库 前3条
1 叶锋;蔡光东;郑子华;亓晓旭;尹鹏;;基于多特征融合的药用植物标本识别[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
2 段其昌;季长有;;基于多特征融合的快速人脸检测[A];第十七届全国测控计量仪器仪表学术年会(MCMI'2007)论文集(上册)[C];2007年
3 李玉峰;郑德权;赵铁军;;基于SVM和多特征融合的图像分类[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
中国博士学位论文全文数据库 前5条
1 刘明华;复杂环境下基于多特征融合的目标跟踪关键技术研究[D];青岛科技大学;2016年
2 田纲;基于多特征融合的Mean shift目标跟踪技术研究[D];武汉大学;2011年
3 徐志刚;基于多特征融合的路面破损图像自动识别技术研究[D];长安大学;2012年
4 陈秀新;多特征融合视频复制检测关键技术研究[D];北京工业大学;2013年
5 初红霞;基于均值移动和粒子滤波的目标跟踪关键技术研究[D];哈尔滨工程大学;2012年
中国硕士学位论文全文数据库 前10条
1 张岩;基于多特征融合及二部图匹配的3D目标检索技术研究[D];哈尔滨工业大学;2015年
2 计明明;基于多特征融合的三维模型检索技术[D];浙江大学;2015年
3 王庆;基于多特征融合的人体动作识别方法研究[D];上海大学;2015年
4 刘婕;复杂场景多特征融合粒子滤波目标跟踪[D];重庆理工大学;2015年
5 崔剑;基于多特征融合的分级行人检测方法研究[D];电子科技大学;2015年
6 王珊珊;基于极化SAR非监督分类的油膜厚度估算方法研究[D];大连海事大学;2015年
7 肖冠;基于多特征融合的异类传感器中段目标关联算法研究[D];国防科学技术大学;2013年
8 王建荣;基于多特征融合的无人机航拍图像识别研究[D];成都理工大学;2015年
9 高爽;基于多特征融合的粒子滤波跟踪算法研究[D];西安电子科技大学;2014年
10 坎启娇;基于多特征融合的多目标跟踪算法[D];河北工业大学;2015年
,本文编号:1094803
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1094803.html