视频监控中跌倒行为识别
本文关键词:视频监控中跌倒行为识别
更多相关文章: 跌倒行为 自动识别 宽高比 Hu矩人体轮廓离心率 人体轴线角 多特征融合
【摘要】:监控视频中的异常行为检测是计算机视觉研究领域的一个重要研究课题。人体跌倒行为作为异常行为的一种,可以对老龄化社会中的老年人跌倒行为做出实时预警,对保护老年人生命安全起到重要作用。本文采用三帧差法与更新运动历史图像相结合的方法获取运动前景,然后采用膨胀形态学操作与中值滤波操作,消除前景图像的噪声,对运动区域标记采用矩形包围框来获取感兴趣区域的形态变化,最后采用矩形框的宽高比、人体Hu矩特征、人体轮廓离心率、人体轴线角多特征融合来识别跌倒异常行为,对识别出的异常行为实时报警。实验结果表明对固定背景的监控视频中的单人跌倒异常行为识别,文中的算法具有很强的鲁棒性与稳定性。
【作者单位】: 大连民族大学计算机科学与工程学院;北方民族大学计算机科学与工程学院;
【关键词】: 跌倒行为 自动识别 宽高比 Hu矩人体轮廓离心率 人体轴线角 多特征融合
【基金】:辽宁省教育厅科学基金项目(L2014544) 中央高校基本科研业务费专项资金项目(DC201502030201;DC201502030404)
【分类号】:TP391.41
【正文快照】: 随着社会老龄化的发展,“空巢老人”的人数和所占的比例越来越高,老年人的健康问题也是越来越突出[1-5]。跌倒行为是老年人人群多发的行为,也是给老年人身体健康带来最严重后果的一种不可预测的行为。发生跌倒,如果不能及时得到救治,就可能会出现生命危险。鉴于以上需求,许多
【相似文献】
中国期刊全文数据库 前10条
1 初红霞;王科俊;王希凤;郭庆昌;韩晶;;多特征融合的退火粒子滤波目标跟踪[J];计算机工程与应用;2011年06期
2 顾鑫;王海涛;汪凌峰;王颖;陈如冰;潘春洪;;基于不确定性度量的多特征融合跟踪[J];自动化学报;2011年05期
3 姚红革;杜亚勤;;基于多模式多特征融合粒子滤波视频目标跟踪[J];西安工业大学学报;2012年11期
4 王兰;;基于多特征融合的票据分类技术及应用[J];计算机光盘软件与应用;2013年13期
5 陈增照;何秀玲;杨扬;董才林;;基于多特征融合的票据分类技术及应用[J];计算机工程与应用;2006年09期
6 周斌;林喜荣;贾惠波;宋榕;;多特征融合的手背血管识别算法[J];清华大学学报(自然科学版);2007年02期
7 刘贵喜;范春宇;高恩克;;基于粒子滤波与多特征融合的视频目标跟踪[J];光电子.激光;2007年09期
8 胡全;邱兆文;王霓虹;;基于多特征融合的图像语义标注[J];东北林业大学学报;2008年10期
9 周静;黄心汉;彭刚;;基于多特征融合的飞机目标识别[J];华中科技大学学报(自然科学版);2009年01期
10 沈才梁;许雪贵;许方恒;龙丹;;多特征融合的人脸检测[J];计算机系统应用;2009年11期
中国重要会议论文全文数据库 前3条
1 叶锋;蔡光东;郑子华;亓晓旭;尹鹏;;基于多特征融合的药用植物标本识别[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
2 段其昌;季长有;;基于多特征融合的快速人脸检测[A];第十七届全国测控计量仪器仪表学术年会(MCMI'2007)论文集(上册)[C];2007年
3 李玉峰;郑德权;赵铁军;;基于SVM和多特征融合的图像分类[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
中国博士学位论文全文数据库 前5条
1 刘明华;复杂环境下基于多特征融合的目标跟踪关键技术研究[D];青岛科技大学;2016年
2 田纲;基于多特征融合的Mean shift目标跟踪技术研究[D];武汉大学;2011年
3 徐志刚;基于多特征融合的路面破损图像自动识别技术研究[D];长安大学;2012年
4 陈秀新;多特征融合视频复制检测关键技术研究[D];北京工业大学;2013年
5 初红霞;基于均值移动和粒子滤波的目标跟踪关键技术研究[D];哈尔滨工程大学;2012年
中国硕士学位论文全文数据库 前10条
1 张岩;基于多特征融合及二部图匹配的3D目标检索技术研究[D];哈尔滨工业大学;2015年
2 计明明;基于多特征融合的三维模型检索技术[D];浙江大学;2015年
3 王庆;基于多特征融合的人体动作识别方法研究[D];上海大学;2015年
4 刘婕;复杂场景多特征融合粒子滤波目标跟踪[D];重庆理工大学;2015年
5 崔剑;基于多特征融合的分级行人检测方法研究[D];电子科技大学;2015年
6 王珊珊;基于极化SAR非监督分类的油膜厚度估算方法研究[D];大连海事大学;2015年
7 肖冠;基于多特征融合的异类传感器中段目标关联算法研究[D];国防科学技术大学;2013年
8 王建荣;基于多特征融合的无人机航拍图像识别研究[D];成都理工大学;2015年
9 高爽;基于多特征融合的粒子滤波跟踪算法研究[D];西安电子科技大学;2014年
10 坎启娇;基于多特征融合的多目标跟踪算法[D];河北工业大学;2015年
,本文编号:1103029
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1103029.html