高光谱异常检测中背景抑制方法研究
本文关键词:高光谱异常检测中背景抑制方法研究 出处:《光电子·激光》2016年02期 论文类型:期刊论文
更多相关文章: 高光谱异常检测 小波分解 主成分分析(PCA) KRX算法
【摘要】:针对高光谱图像复杂背景导致异常检测效果下降的问题,提出了一种新的异常检测方法。首先使用小波分解将原始高光谱图像分解成高频信息图像和低频信息图像,使用主成分分析(PCA)方法抑制高光谱原始图像的背景信息;然后将背景抑制后图像和高频信息图像融合,得到处理后图像;最后使用Kerner-Reed-Xiaoli(KRX)算法进行异常检测,并仿真证明了本文方法在提高异常检测效果和效率方面的有效性。
[Abstract]:......
【作者单位】: 空军航空大学;
【基金】:吉林省科技发展计划资助项目(20140101213JC)资助项目
【分类号】:TP391.41
【正文快照】: 1引言高光谱图像异常检测按照是否使用目标的先验知识,可以将其分为目标匹配检测和异常检测两类[1,2]。由于光谱库的不完善,且目标先验知识难以获得,高光谱异常检测得到了更加广泛的研究和应用。目前较为经典的检测算法为Reed-Xiaoli(RX)算法,但是存在一定的缺点[3~5],一是算
【相似文献】
相关期刊论文 前10条
1 谌德荣;宫久路;陈乾;曹旭平;;基于样本分割的快速高光谱图像异常检测支持向量数据描述方法[J];兵工学报;2008年09期
2 王雷;乔晓艳;董有尔;张姝;尚艳飞;;高光谱图像技术在农产品检测中的应用进展[J];应用光学;2009年04期
3 蒲晓丰;雷武虎;张林虎;蒋奇材;;基于Fukunaga-Koontz变换的高光谱图像异常检测[J];红外技术;2010年04期
4 成宝芝;郭宗光;;高光谱图像波段间相关特性研究[J];大庆师范学院学报;2013年06期
5 王庆国;黄敏;朱启兵;孙群;;基于高光谱图像的玉米种子产地与年份鉴别[J];食品与生物技术学报;2014年02期
6 杨龙;易宏杰;李因彦;;遥感高光谱图像赤潮识别[J];传感器世界;2007年05期
7 汪倩;陶鹏;;结合空间信息的高光谱图像快速分类方法[J];微计算机信息;2010年21期
8 王立国;孙杰;肖倩;;结合空-谱信息的高光谱图像分类方法[J];黑龙江大学自然科学学报;2010年06期
9 冯朝丽;朱启兵;朱晓;黄敏;;基于光谱特征的玉米品种高光谱图像识别[J];江南大学学报(自然科学版);2012年02期
10 徐爽;何建国;马瑜;梁慧琳;刘贵珊;贺晓光;;高光谱图像技术在水果品质检测中的研究进展[J];食品研究与开发;2013年10期
相关会议论文 前10条
1 张兵;王向伟;郑兰芬;童庆禧;;高光谱图像地物分类与识别研究[A];成像光谱技术与应用研讨会论文集[C];2004年
2 高连如;张兵;孙旭;李山山;张文娟;;高光谱数据降维与分类技术研究[A];第八届成像光谱技术与应用研讨会暨交叉学科论坛文集[C];2010年
3 王成;何伟基;陈钱;;基于波段重组和小波变换的高光谱图像嵌入式压缩方法[A];黑龙江、江苏、山东、河南、江西 五省光学(激光)联合学术‘13年会论文(摘要)集[C];2013年
4 孙蕾;罗建书;;基于分类预测的高光谱遥感图像无损压缩[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
5 杨勇;刘木华;邹小莲;苗蓬勃;赵珍珍;;基于高光谱图像技术的猕猴桃硬度品质检测[A];走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(下册)[C];2008年
6 张晓红;张立福;王晋年;童庆禧;;HJ-1A卫星高光谱遥感图像质量综合评价[A];第八届成像光谱技术与应用研讨会暨交叉学科论坛文集[C];2010年
7 高东生;高连知;;基于独立分量分析的高光谱图像目标盲探测方法研究[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年
8 冯维一;陈钱;何伟基;;基于小波稀疏的高光谱目标探测算法[A];黑龙江、江苏、山东、河南、江西 五省光学(激光)联合学术‘13年会论文(摘要)集[C];2013年
9 彭妮娜;易维宁;方勇华;;基于核函数的高光谱图像信息提取研究[A];光子科技创新与产业化——长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集[C];2006年
10 蒲晓丰;雷武虎;黄涛;王迪;;基于稳健背景子空间的高光谱图像异常检测[A];中国光学学会2010年光学大会论文集[C];2010年
相关博士学位论文 前10条
1 普晗晔;高光谱遥感图像的解混理论和方法研究[D];复旦大学;2014年
2 王亮亮;非线性流形结构在高光谱图像异常检测中的应用研究[D];国防科学技术大学;2014年
3 贺智;改进的经验模态分解算法及其在高光谱图像分类中的应用[D];哈尔滨工业大学;2014年
4 魏然;基于成像机理分析的高光谱图像信息恢复研究[D];哈尔滨工业大学;2015年
5 叶珍;高光谱图像特征提取与分类算法研究[D];西北工业大学;2015年
6 冯婕;基于软计算和互信息理论的遥感图像地物分类[D];西安电子科技大学;2014年
7 孙涛;快速多核学习分类研究及应用[D];西安电子科技大学;2015年
8 贺霖;高光谱图像自动目标检测技术研究[D];西北工业大学;2007年
9 周爽;蚁群算法在高光谱图像降维和分类中的应用研究[D];哈尔滨工业大学;2010年
10 陈雨时;基于光谱特性的高光谱图像压缩方法研究[D];哈尔滨工业大学;2007年
相关硕士学位论文 前10条
1 丰烁;高光谱图像波段选取问题的改进算法研究[D];昆明理工大学;2015年
2 赵伟彦;果蔬干燥过程中的品质无损检测技术研究[D];江南大学;2015年
3 马亚楠;果蔬中内部害虫的高光谱图像检测技术研究[D];江南大学;2015年
4 刘大洋;基于近红外光谱和高光谱图像技术无损识别猕猴桃膨大果[D];西北农林科技大学;2015年
5 王坤;高光谱图像异常目标检测及光谱成像在伪装评估方面的应用研究[D];南京理工大学;2015年
6 王启聪;高光谱图像分类的GPU并行优化研究[D];南京理工大学;2015年
7 程凯;无先验信息的高光谱图像小目标检测算法研究[D];苏州大学;2015年
8 李秩期;基于高光谱及多信息融合的马铃薯外部缺陷无损检测研究[D];宁夏大学;2015年
9 王健;基于高光谱图像的马铃薯形状及重量分类识别建模研究[D];宁夏大学;2015年
10 吴蓓芬;偏振高光谱图像场景仿真及分类方法研究[D];哈尔滨工业大学;2015年
,本文编号:1349937
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1349937.html